传送门 Description 给你一张 n 个点 m 条边的DAG,1 号节点没有入边.再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 . Input 输入文件的第一行包含四个整数 n.m.x和y,依次代表枫叶上的穴位数.脉络数,以及要添加的脉络是从穴位 x连向穴位y的. 接下来 m行,每行两个整数,由空格隔开,代表一条脉络.第 i 行的两个整数为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的. Output 输出一行,为添加了从穴位…
题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 输入文件的第一行包含四个整数 n.m.x 和 y ,依次代表枫叶上的穴位数.脉络数,以及要添加的脉络是从穴位 x 连向穴位 y 的. 接下来 m 行,每行两个整数,由空格隔开,代表一条脉络.第 i 行的两个整数为 ui 和 vi ,代表第 i 条脉络是从穴位 ui 连向穴位 vi 的.  输出 输…
分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有向边所构成的有向图的以\(1\)为根的外向树形图的个数. 考虑一个DAG的情况,答案显然是: \[\prod_{i=2}^{n}in[i]\] 其中\(in[i]\)表示结点\(i\)的入度,这个式子的意思就是给每个非根结点选一条入边.由于是DAG所以这样构造出来的一定是一个外向树形图. 加入一条边…
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见到你姐姐吧.」  恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑. 「那你仔细观察过枫叶吗?」  说罢,枫茜伸手,接住了一片飘落的枫叶.  「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说,枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.枫树的灵…
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见 到你姐姐吧.」  恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.  「那你仔细观察过枫叶吗?」  说罢,枫茜伸手,接住了一片飘落的枫叶.  「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说, 枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.…
原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j∉S)}degree_j\] 因为加了\(x\)到\(y\)这条边出现了环,所以环上一定有一条边是从\(x\)连向\(y\),所以在没有这条边时,能从\(y\)连向\(x\)的方案都是不满足的. 因此,上面这个式子就是找出了一条从\(y\)至\(x\)的路径后,连边的方案数.可以看作,\(y\)到\…
DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). -------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   typedef lo…
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Status][Discuss] Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见 到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.…
[HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么有一些不合法的图是\(y,\dots,x\)形成了一个环,考虑把所有环的方案减掉. 考虑枚举环上的点集\(S\),答案为 \[ \sum_S\prod_{i\notin s}d_i \] 意思是环上的点钦定父亲,其他的点照旧统计 这个方案数可以dp,设\(dp_i\)表示\(i,\dots,x\)形…
4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加入一条边后,我们依然可以按照上面的公式求出一个值T,然后减去不合法的,即存在环的. 那么这个环就是X->Y这条边,和Y->X的一条路径,X->Y必选了,所以可以考虑求出Y->X的一条路径,然后这条路径和X->Y构成的环的答案是$\prod\limits_{u不是这条路径上的点}…