深度学习中潜藏的稀疏表达 Deep Networks for Image Super-Resolution with Sparse Prior http://www.ifp.illinois.edu/~dingliu2/iccv15/ 浅谈深度学习中潜藏的稀疏表达 | 统计之都https://cosx.org/2016/06/discussion-of-sparse-coding-in-deep-learning 浅谈深度学习中潜藏的稀疏表达 - 菜鸡一枚 - 博客园 http://www.cn…
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) 作者:Jonathan Gomes-Selman, Arjun Sawhney, WoodyWang 摘要 本文提出使用Wasserstein(沃瑟斯…
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito Koishida 摘要 语音超分辨率(SSR)或语音带宽扩展的目标是由给定的低分辨率语音信号生成缺失的高频分量.它有提高电信质量的潜力.我们提出了一种新的SSR方法,该方法利用生成对抗网络(GANs)和正则化(regularization)方法来稳定GAN训练.生成器网络是有一维卷积核的卷积自编码器,…
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercise: Implement deep networks for digit classification.利用深度网络完成MNIST手写数字数据库中手写数字的识别.即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作为训练数据集,然后把它输入到栈式自编码器中,它的第一层自编码器…
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks for digit classification stackedAEPredict.m function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) % stackedAEPre…
目录 引 主要内容 定理1 Claim 1 Claim 2 定理2 证明 定理1的证明 Claim 1 的证明 Kronecker product (克罗内克积) Theorem 2 的证明 代码 Arora S, Cohen N, Hazan E, et al. On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization[J]. arXiv: Learning, 2018. 引 我很喜欢…
Initialization of deep networks 24 Feb 2015Gustav Larsson As we all know, the solution to a non-convex optimization algorithm (like stochastic gradient descent) depends on the initial values of the parameters. This post is about choosing initializati…
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal Processing Magazine, IEEE 20, no. 3 (2003): 75-86. 简介 超分辨率重建的目的是使用一组低分辨率的图像来估计一副高分辨率图像.重建主要通过两个步骤来完成:配准低分辨率的图片组到一个公共的坐标系,然后使用图像的生成模型(generative image model…
(一)Highway Networks 与 Deep Networks 的关系 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class ImageNet数据集上的图像分类任务通过利用深层神经网络把准确率从84%提高到了95%,然而,在训练深层神经网络的时候却是非常困难的,神经网络的层数越多,存在的问题也就越多(例如大家熟知的梯度消失.梯度爆炸问题,下文会详细讲解).训练起来也就是愈加困难,这是一个公认的难题. 2015年由Rupesh…
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:https://arxiv.org/pdf/1812.11703.pdf Project:https://lb1100.github.io/SiamRPN++ 1. Background and Motivation: 与 CVPR 2019 的另一篇文章 Deeper and Wider Siames…