首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
TensorFlow学习笔记(七)Tesnor Board
】的更多相关文章
tensorflow学习笔记七----------RNN
和神经网络不同的是,RNN中的数据批次之间是有相互联系的.输入的数据需要是要求序列化的. 1.将数据处理成序列化: 2.将一号数据传入到隐藏层进行处理,在传入到RNN中进行处理,RNN产生两个结果,一个结果产生分类结果,另外一个结果传入到二号数据的RNN中: 3.所有数据都处理完. 导入数据 import tensorflow as tf import from tensorflow.examples.tutorials.mnist import input_data import numpy…
tensorflow学习笔记七----------卷积神经网络
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28*1=784.先让这些数据通过第一个卷积层,在这个卷积上指定一个3*3*1的feature,这个feature的个数设为64.接着经过一个池化层,让这个池化层的窗口为2*2.然后在经过一个卷积层,在这个卷积上指定一个3*3*64的feature,这个featurn的个数设置为128,.接着经过一个池化…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu tf.nn.…
TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
Tensorflow学习笔记No.10
多输出模型 使用函数式API构建多输出模型完成多标签分类任务. 数据集下载链接:https://pan.baidu.com/s/1JtKt7KCR2lEqAirjIXzvgg 提取码:2kbc 1.读取数据并构建数据集 详细的API介绍在Tensorflow学习笔记5.0中均有提及,这里只简单讲述方法流程并展示代码. 1.1图片数据读取 首先导入需要的模块(运行环境为jupyternotebook). 1 import tensorflow as tf 2 import numpy as np…
Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
(转)Qt Model/View 学习笔记 (七)——Delegate类
Qt Model/View 学习笔记 (七) Delegate 类 概念 与MVC模式不同,model/view结构没有用于与用户交互的完全独立的组件.一般来讲, view负责把数据展示 给用户,也处理用户的输入.为了获得更多的灵性性,交互通过delegagte执行.它既提供输入功能又负责渲染view中的每个数据项. 控制delegates的标准接口在QAbstractItemDelegate类中定义.Delegates通过实现paint()和sizeHint()以达到渲染内容的目的.然而,简…
Learning ROS for Robotics Programming Second Edition学习笔记(七) indigo PCL xtion pro live
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS forRobotics Programming Second Edition学习笔记(七)indigo PCL xtion pro live indigo PCL例子以及xtionpro live pcl --$ rosrunchapter6_tutorials pcl_create --$ rviz --$ roscdchap…
Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱.random.shuffle() 在训练数据上推断模型:得到输出 计算损失:loss(X, Y)多种损失函数 调整模型参数:最小化损失 SGD等优化方法. 评估:70%:30% 分训练集和校验集 代码框架: 首先模型参数初始化, 然后为每个训练闭环中的运算定义一个方法:读取训练数据input,计算…
Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自动根据loss计算对应variable的导数.示例如下: loss = ... opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) init = tf.initiali…
Typescript 学习笔记七:泛型
中文网:https://www.tslang.cn/ 官网:http://www.typescriptlang.org/ 目录: Typescript 学习笔记一:介绍.安装.编译 Typescript 学习笔记二:数据类型 Typescript 学习笔记三:函数 Typescript 学习笔记四:回忆Es5 中的类 Typescript 学习笔记五:类 Typescript 学习笔记六:接口 Typescript 学习笔记七:泛型 泛型的定义 泛型:软件工程中,我们不仅要创建一致的定义良好的…
python3.4学习笔记(七) 学习网站博客推荐
python3.4学习笔记(七) 学习网站博客推荐 深入 Python 3http://sebug.net/paper/books/dive-into-python3/<深入 Python 3> 的内容涵盖了 Python 3 及其与 Python 2 的区别.相对<深入 Python>而言,它 20% 的内容进行了修订,80% 的内容是全新的. 廖雪峰的官方网站,很多网友都推荐的学习python的名博http://www.liaoxuefeng.com/ 中文,免费,零起点,完整…
Go语言学习笔记七: 函数
Go语言学习笔记七: 函数 Go语言有函数还有方法,神奇不.这有点像python了. 函数定义 func function_name( [parameter list] ) [return_types] { 函数体 } 举个例子: /* 函数返回两个数的最大值 */ func max(num1, num2 int) int { /* 声明局部变量 */ var result int if (num1 > num2) { result = num1 } else { result = num2 }…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax 这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 首先看下它的数学表达式:decayed_learing_rate=learing_rate*decay_rate^(gloabl_steps/decay_…
tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4*2+2 接下来是损失函数 主流的有均分误差,交叉熵,以及自定义 这里贴上课程里面的代码 # -*- coding: utf-8 -*- """ Created on Sat May 26 18:42:08 2018 @author: Administrator "&qu…
tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真实值得差距,比如sigmod或者cross-entropy 均方误差:tf.reduce_mean(tf.square(y-y_))很好理解,假如在欧式空间只有两个点的的话就是两点间距离的平方,多点就是多点误差的平方和除以对比点个数 学习率:决定了参数每次更新的幅度 反向传播训练方法:为了减小los…
tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计算图只描述过程,不执行. (2)tf中的会话 那么怎么计算呢? tensorflow有个会话是专门用来计算的 import tensorflow as tf x=tf.constant([[1.0,2.0]]) w=tf.constant([[3.0],[4.0]]) y=tf.matmul(x,w…
iOS 学习笔记七 【博爱手把手教你使用2016年gitHub Mac客户端】
iOS 学习笔记七 [博爱手把手教你使用gitHub客户端] 第一步:首先下载git客户端 链接:https://desktop.github.com 第二步:fork 大神的代码[这里以我的代码为例,但我不是大神!] 1.记得加星哦! 2.记得fork大神的代码!这两步是大神继续更新代码的动力! 第三步:打开gitHub Mac客户端, 第四步:注册.登陆 git账户,这个我就不说了吧!不会的自行面壁思过去! 第五步:开始步入正题! 步骤我都已经写到图片了,大家看图片吧,这个是多人开发,git…
【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整
今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对于三通道的RGB图像则为: 知道了排列方式之后我们来讨论一下访问图像像素常用的三种方式: 1.使用指针访问: 2.使用迭代器访问: 3.使用动态地址访问: 为了比较一下三种方式的效率,我们介绍两个函数来统计一下每种方式所需的时间. int64 getTickCount()函数:返回CPU自某个时间(…
Linux学习笔记(七) 查询系统
1.查看命令 (1)man 可以使用 man 命令名称 命令查看某个命令的详细用法,其显示的内容如下: NAME:命令名称 SYNOPSIS:语法 DESCRIPTION:说明 OPTIONS:选项 man 数据库保存在以下的目录中(可以使用 manpath 命令查看): /usr/local/man /usr/local/share/man /usr/share/man 在每一个保存位置可以发现多个以 manX 命名的子目录(X 代表数字,范围为 1~9,分别对应不同的命令): 1:可执行文件…
tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早期一度被认为是一种无监督的特征学习(Unsuperbised Feature Learning),模仿了人脑的对特征逐层抽象提取的过程.这…
tensorflow学习笔记——VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能直接的关系,通过反复堆叠 3*3 的小型卷积核和 2*2 的最大池化层,VGGNet成功的构筑了16~19层深的卷积神经网络.VGGNet相比之前的 state-of…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
TensorFlow学习笔记0-安装TensorFlow环境
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz GPU: NVIDIA GeForce GTX 1050 Ti 所以本笔记记录Win10 64位系统下,TensorFlow的GPU版开发环境的搭建. TensorFlow-GPU环境安装 首先下载安装Anaconda,版本不受限制…
tensorflow学习笔记二:入门基础 好教程 可用
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础 TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数. 1.编辑器 编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或…
TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数据(二维的像素网格): 卷积网络是指至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络. 卷积 前面讲过卷积, 相关算法这里直接使用. 卷积公式为:\(s(t)=\int_{-\infty}^{t}x(\tau)w(t-\tau)d\tau\),记作\(s(t)=(x*w)(t)\).…
TensorFlow学习笔记5-概率与信息论
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测…