对EM算法的理解】的更多相关文章

EM算法中要寻找的参数θ,与K-means聚类中的质心是对应的,在高斯混合模型中确定了θ,便可为样本进行类别的划分,属于哪个高斯分布的概率大就是哪一类,而这一点与K-means中的质心一样,质心确定了,样本的类别就确定了,只不过K-means采用样本到质心的距离来衡量归属于某一类的概率,所以K-means的质心-距离机制与高斯分布是异曲同工.…
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &a…
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture unigram 语言模型和混合高斯模型GMM的参数,最后总结EM算法的一般形式及运用关键点.对于改进PLSA,引入hyperparameter的LDA模型及其Gibbs Sampling参数估计方法放在本系列后面的文章LDA及Gibbs Samping介绍. 1 LSA and SVD LSA(隐性…
极大似然算法 本来打算把别人讲的好的博文放在上面的,但是感觉那个适合看着玩,我看过之后感觉懂了,然后实际应用就不会了.... MLP其实就是用来求模型参数的,核心就是“模型已知,求取参数”,模型的意思就是数据符合什么函数,比如我们硬币的正反就是二项分布模型,再比如我们平时随机生成的一类数据符合高斯模型... 直接上公式: L(Θ) :联合概率分布函数,就是每个样本出现的概率乘积.  x1,x2,x3....xn  : 样本  Θ : 模型的参数(比如高斯模型的两个参数:μ.σ)  p(xi ;…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p(HH | pH = 0.5) = 0.5*0.5 = 0.25. 这种写法其实有点误导,后面的这个p其实是作为参数存在的,而不是一个随机变量,因此不能算作是条件概率,更靠谱的写法应该是 p(HH;p=0.5). 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,…
一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使用这些方法.EM算法适用于带有隐变量的概率模型的参数估计,利用极大似然估计法逐步迭代求解. 二.jensen不等式   是区间 上的凸函数,则对任意的 ,有不等式:   即: E[f(X)] ≥ f(E(X))  ,因为(x1+x2+...+xn)/n=E(X),同理可得E(f(X)).当x1=x2…
https://www.jianshu.com/p/1121509ac1dc 如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计.个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要.idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已.打个比方,一个梨很甜,用数学的语言可以表述为糖分含量90%,但只有亲自咬一口,你才能真正感觉到这个梨有多甜,也才能真正理解数学上的90%的糖分究竟是怎么样的.如果EM是个梨,…
http://blog.csdn.net/xmu_jupiter/article/details/50936177 最近在写毕业论文,由于EM算法在我的研究方向中经常用到,所以把相关的资料又拿出来看了一下,有了一些新的理解与感悟.在此总结一下. EM算法即“期望极大算法”.学过机器学习的朋友都知道EM算法分两步:E步求期望,M步求极大.但是期望是求谁的期望,极大是求谁的极大呢?这里面其实有两种解读角度. “通俗”角度 通俗角度的话,求极大肯定是求似然函数的极大了,而且一般都是对数似然.我们一般解…
EM算法之不同的推导方法和自己的理解 一.前言 EM算法主要针对概率生成模型解决具有隐变量的混合模型的参数估计问题. 对于简单的模型,根据极大似然估计的方法可以直接得到解析解:可以在具有隐变量的复杂模型中,用MLE很难直接得到解析解,此时EM算法就发挥作用了. E步解决隐变量的问题,M步求解模型的参数值,也就是极大似然的方法求取模型的参数值. 自己的理解:走一步看一步,走了看,看了再走,迭代过程. 首先使用估计的方式直接设置一组模型的参数值,这组模型的参数值是先验的,甚至可以说是我们瞎设的,这么…