Spark源码分析 – BlockManager】的更多相关文章

参考, Spark源码分析之-Storage模块 对于storage, 为何Spark需要storage模块?为了cache RDD Spark的特点就是可以将RDD cache在memory或disk中,RDD是由partitions组成的,对应于block 所以storage模块,就是要实现RDD在memory和disk上的persistent功能 首先每个节点都有一个BlockManager, 其中有一个是Driver(master), 其余的都是slave master负责track所有…
http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/17222873 如果想了解Spark的设计, 第一个足够 如果想梳理Spark的源码整体结构, 第二个也可以  ALL Spark源码分析 – SparkContext Spark源码分析 – SparkEnv  Spark 源码分析 -- task实际执行过程   DAGScheduler Spark…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains(…
参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件 所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序, 在map端的将相同partition的merge到一起,…
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现TaskSchedulerListener, 并注册到TaskScheduler中, 这样TaskScheduler可以随时调用TaskSchedulerListener中的接口报告状况变更 TaskSchedulerListen…
Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Spark内存管理模型的神秘面纱. 我们在<Spark源码分析之七:Task运行(一)>一文中曾经提到过,在Task被传递到Executor上去执行时,在为其分配的TaskRunner线程的run()方法内,在Task真正运行之前,我们就要构造一个任务内存管理器TaskMemoryManager,然后…
在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中被调度执行.继而,我们对TaskRunner的run()方法进行了详细的分析,总结出了其内Task执行的三个主要步骤: Step1:Task及其运行时需要的辅助对象构造,主要包括: 1.当前线程设置上下文类加载器: 2.获取序列化器ser: 3.更新任务状态TaskState: 4.计算垃圾回收时间: 5.反…
在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在Task调度逻辑的最后,CoarseGrainedSchedulerBackend的内部类DriverEndpoint中的makeOffers()方法的最后,我们通过调用TaskSchedulerImpl的resourceOffers()方法,得到了TaskDescription序列的序列Seq[Seq[Tas…
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. Stage划分与提交阶段主要是由DAGScheduler完成的,而DAGScheduler负责Job的逻辑调度,主要职责也即DAG图的分解,按照RDD间是否为shuffle dependency,将整个Job划分为一个个stage,并将每个stage转化为tasks的集合--TaskSet.…