MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息表t_product pid pname 01 小米 02 华为 03 格力 商品数据pd.txt 小米 华为 格力 将商品信息表中数据根据商品pid合并到订单数据表中. 最终数据形式: id pname amount 1001 小米 1 1004 小米 4 1002 华为 2 1005 华为 5…
前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分而治之的思想,将一个数据的处理过程分为Map(映射)和Reduce(处理)两步.那么用户只需要将数据以需要的格式交给reduce函数处理就能轻松实现分布式的计算,很多的工作都由mapReduce框架为我们封装好,大大简化了操作流程. 1 MapReduce的编程思想 MapReduce的设计思路来源…
1.压缩和输入分片 Hadoop中文件是以块的形式存储在各个DataNode节点中,假如有一个文件A要做为输入数据,给MapReduce处理,系统要做的,首先从NameNode中找到文件A存储在哪些DataNode中,然后,在这些DataNode中,找到相应的数据块,作为一个单独的数据分块,作为map任务的输入,这就是mapreduce处理的数据的粗略过程!但是,我们都知道,对于一些大型的数据,压缩是很有用的,不仅能够节省存储空间,而且还能够加快传输速率.把文件压缩后再存入数据节点中,这个很常见…
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数 long maxSize = getMaxSplitSize(job); //getMaxSplitSize为用户设置的最大分片数,默认最大为long 922337…
案例三: 统计共同好友 任务需求: 如下的文本, A:B,C,D,F,E,OB:A,C,E,KC:F,A,D,ID:A,E,F,LE:B,C,D,M,LF:A,B,C,D,E,O,MG:A,C,D,E,FH:A,C,D,E,OI:A,OJ:B,OK:A,C,DL:D,E,FM:E,F,GO:A,H,I,J 求出哪些人两两之间有共同好友,及他俩的共同好友都是谁 b -ac -ad -aa -b c -b b -e b -j 解题思路: 写两个mapreduce 第一个MR输出结果如:b -> a…
加班一时爽,一直加班~一直爽~  欢迎收看http://www.996.icu/ 今天弄了下MySQL中两表合并的并且要处理一列数据,这列数据原来都是小写字母,处理时将这列数据改成驼峰命名的~~ 基本操作:(比如处理列2) insert into (目标表名) 指定列1,指定列2,指定列3,指定列4..select 指定列1,(case when 指定列2 = 'whdisshuaibi' then 'whdIsShaiBi' ),指定列3,指定列4 from 数据来源表 如果要处理一列的多个值…
一.MapReduce中有哪些常见算法 (1)经典之王:单词计数 这个是MapReduce的经典案例,经典的不能再经典了! (2)数据去重 "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重. (3)排序:按某个Key进行升序或降序排列 (4)TopK:对源数据中所有数据进行排序,取出前K个数据,就是TopK. 通常可以借助堆(Heap)来实现TopK问题. (5)选择:关系代数基…
转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,最近凡是空闲时,便在看“Hadoop”…
MapReduce的应用案例(利用MapReduce进行排序) MapReduce的应用案例(利用MapReduce进行排序) 思路: Reduce之后直接进行结果合并 具体样例: 程序名:Sort.java import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import o…
摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop MapReduce 中的侧连接>,作者:Donglian Lin. 在这篇博客中,将使用 MapReduce 示例向您解释如何在 Hadoop MapReduce 中执行缩减侧连接.在这里,我假设您已经熟悉 MapReduce 框架并知道如何编写基本的 MapReduce 程序.本博客中讨论的主题如下…