51nod 1120 机器人走方格 V3】的更多相关文章

1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果. Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 1…
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 明显是一道卡特兰数,推出ans = C(2*n-2,n-1) * 2 / n % MOD先让n--,ans = C(2*n,…
N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10————————————————————————————这题是裸的卡特兰数 不过因为mod比2*n小 所以要加上lucas…
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡斯定理来求. #include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> using namespace std; const int mod=10007,N=10020;…
1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input示例 4 Output示例 10 思路:这个在对角线的上方,就可以转换为,火…
题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可以通过快速幂快速求出. 因为n的数据范围较大,所以要用到卢卡斯定理:若p为素数,那么C(m,n)%p = C(m/p,n/p) * C(m%p,n%p)  % p.从而我们可以递归的可以求出C(m,n),当n==0,返回1. 因为方格含有两个三角形,所以Catalan[n]*2 即是最终答案 #in…
1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果.   Input 输入一个数N(2 <= N <= 10^9). Output 输出走法的数量 Mod 10007. Input 示例 4 Output 示例 10 思路:实际是本质…
跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了.然后由于n和m太大所以用了lucas定理 //跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int…
51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式子:dp[i][j] = dp[i-1][j] + dp[i][j-1].  dp[i][j]表示当规格为i*j  (m = i && n = j)  时本题的结果. 直接上代码: #include <stdio.h> #include <string.h> #defi…
1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 1000000) Output 输出走法的数量 Mod 10^9 + 7. Input示例 2 3 Output示例 3 C(n - 1 +…