一.SVD    1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值,如果V维度比U大,则说明进行了投影. SVD分解表示把旋转.缩放.特征向量分离出来. 二.SVD与奇异值   1.计算上: U的列为AAT的正交特征向量 V的列为ATA的正交特征向量 2.含义上: 都是抽取一个矩阵的主要部分 3.不同点: 特征值分解只有缩放,没有旋转:所有矩阵都可以奇异值…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清.今天终于把整个过程整理出来,方便自己学习,也和大家交流. 提出背景 以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运…
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通常需要被表示成向量形式以输入模型进行训练. 但是在对向维向量进行处理和分析时, 会极大地消耗系统资源, 甚至产生维度灾难. 因此, 对特征向量进行降维, 即用一个低维度的向量表示原始高维度的特征就显得尤为重要. PCA(Principal C…
上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Component Analysis,简称PCA).结合PCA相信能对协方差矩阵有个更深入的认识. PCA的缘起 PCA大概是198x年提出来的吧,简单的说,它是一种通用的降维工具.在我们处理高维数据的时候,为了能降低后续计算的复杂度,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是干这个事的.…
对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合.这时就需要借助主成分分析 (principal component analysis)来概括诸多信息的主要方面.我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质. 任何一个度量指标的好坏除了可靠.真实之外,还必须能充分反映个体间的变异.如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体.由这一点来看,一项指标在个体间的变异越大越…
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
源自知乎的一个答案,网上很多关于PCA的文章,不过很多都只讲到了如何理解方差的投影,却很少有讲到为什么特征向量就是投影方向.本文从形象角度谈一谈,因为没有证明,所以不会严谨,但是应该能够帮助形象理解PCA背后的原理. 一.先从旋转和缩放角度,理解一下特征向量和特征值的几何意义 从定义来理解特征向量的话,就是经过一个矩阵变换后,空间沿着特征向量的方向上相当于只发生了缩放,比如我们考虑下面的矩阵: \[ \begin{bmatrix} 1.5 & 0.5\\ 0.5 & 1.0 \end{bm…
转自:http://blog.163.com/mig3719@126/blog/static/285720652010950825538/ 6. 从关系角度理解SQL 6.1. 关系和表 众所周知,我们目前所用的数据库,通常都是关系数据库.关系自然在其中处于关键位置.初学数据库原理的人可能会很困惑关系和表是什么联系,如果没有清楚的理解,很可能会认为关系这个概念没有实际意义,只会引起混淆.其实这两组概念只是由于理论界与技术界的着重点不同.前者需要用一个专业的.没有歧义的概念来进行理论探讨,后者则希…