所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也就不难想到将生成树转化为平面内的点,x代表Σxi,y代表Σyi(注意这里的xi,yi指的是在生成树中的边的权值),那么问题就变成了在平面内找一个点使得x*y最小,那么显然这个点是在下凸壳上的. 因此可以首先找出两个一定在凸包上的点,例如A(minx,y),B(miny,x),在直线AB下方找一个在凸…
问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) 看成平面上的一个点 \((X,Y)\) 那么就是要求 \(X \times Y\) 最小 设 \(k=X \times Y\),则 \(Y = \frac{k}{X}\) 也就是要求这个反比例函数最靠近坐标轴 我们知道了 \(X\) 最小和 \(Y\) 最小的答案(两遍最小生成树) 设这两个点为 \…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y 坐标,则每棵生成树都是二维平面上的一个点. 答案是二维平面上的一个下凸壳.先求出只考虑 t 的最小生成树和只考虑 c 的最小生成树,它们就是凸壳的两端. 已知两端,考虑递归下去,则要找到距离这两端构成的直线最远的点. 这就是点到直线的距离,等价于三个点组成的三角形面积最小:考虑叉积公式,得出面积关于…
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/46828379"); } 题解: 裸最小乘积生成树. 最小乘积生成树定义: 有一张n个点m条边的无向图,每条边有k个权值. 如今要取一个边集M使得其将全部点连通.并使 ∏ki=1(∑j∈Mjcost(j,vali))…
Description      有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边的费用和*n-1条边的时间和,你的任务是求一个方案使得v最小 Input 第一行两个整数n,m,接下来每行四个整数a,b,c,t,表示有一条公路从城市a到城市b需要t时间和费用c Output [output]timeismoney.out 仅一行两个整数sumc,sumt,(sumc表示使得v最小…
题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面上的坐标 在同一个反比例函数图像上的点权值相同,反比例函数\(xy\)越小的点越贴近坐标轴 所以答案一定在下凸包上 我们就递归查找这样的点 我们先分别将两种权值作为指标求出\(A\)和\(B\)两个点,分别是\(x\)最小的点和\(y\)最小的点,即为下凸包的一个边界 我们找到位于\(AB\)左下角…
题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可以把它看成平面上的一个点,其中\(\sum c\)为横坐标,\(\sum t\)为纵坐标.那么题目就可以转化成求反比例函数图像上的点\(k=xy\)满足\(k\)最小 我们先求出一棵\(\sum c\)最小的生成树,设这个点为\(A\),和一棵\(\sum t\)最小的生成树,设为\(B\),那么如…
设每个点有x,y两个权值,求一棵生成树,使得sigma(x[i])*sigma(y[i])最小. 设每棵生成树为坐标系上的一个点,sigma(x[i])为横坐标,sigma(y[i])为纵坐标.则问题转化为求一个点,使得xy=k最小.即,使过这个点的反比例函数y=k/x最接近坐标轴. Step1:求得分别距x轴和y轴最近的生成树(点):A.B(分别按x权值和y权值做最小生成树即可). Step2:寻找一个在AB的靠近原点一侧的且离AB最远的生成树C,试图更新答案. [怎么找???? ——由于C离…
正题 题目链接:https://www.luogu.com.cn/problem/P5540 题目大意 给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化 \[(\sum_{e\in T}a_e)\times(\sum_{e\in T}b_e) \] 的情况下最小化\(\sum_{e\in T}a_e\) \(1\leq n\leq 200,1\leq m\leq 10^4\) 解题思路 这种带乘积的可以维护凸壳,对于一棵生成树\(T\)我们视为一个…
洛谷题面传送门 大概是一个比较 trivial 的小 trick?学过了就不要忘了哦( 莫名奇妙地想到了 yyq 的"hot tea 不常有,做过了就不能再错过了" 首先看到这种二维问题我们可以很自然地想到将它们映射到一个二维平面上,即我们将 \(\sum\limits_{e\in E}a_e\) 看作横坐标 \(x\),将 \(\sum\limits_{e\in E}b_e\) 看作纵坐标 \(y\),那么我们所求即是全部生成树表示的点当中横纵坐标之积最大的点.显然这些点肯定都在所有…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p/3959446.html 但复杂度不太会算: 递归边界不要取两个点相等,而是叉积>=0 . 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typed…
[BZOJ2395][Balkan 2011]Timeismoney 题面 \(darkbzoj\) 题解 如果我们只有一个条件要满足的话直接最小生成树就可以了,但是现在我们有两维啊... 我们将每个方法的费用和时间看作一个二维坐标\((x,y)\) 则我们要求\(x\centerdot y=k\)最小即要求反比例函数\(y=\frac kx\)的图像离坐标轴最近. 那么我们怎么求呢?分下面三步: \(Step1\) 分别求出离\(y,x\)轴最近的点,这个通过直接最小生成树一维排序可以求出.…
分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog.csdn.net/u013849646/article/details/51524748 注:这里用的最小乘积生成树的思想,和dp结合 每次找满足条件的最优的点,只不过BZOJ裸题的满足条件是形成一棵树 这个题是大于m,生成树借用最小生成树进行求解最优,大于m用dp进行求解最优 #include…
题解 最小乘积生成树! 我们把,x的总和和y的总和作为x坐标和y左边,画在坐标系上 我们选择两个初始点,一个是最靠近y轴的A,也就是x总和最小,一个是最靠近x轴的B,也就是y总和最小 连接两条直线,在这条直线上面的点都不用考虑了 我们选一个离直线最远的点C,且在直线下方,我们用叉积考虑这个东西,也就是--面积最大!我们如果用最小生成树的话,只要让面积是负的就好了 推一下式子,发现是\((A.y - B.y) * C.x + (B.x - A.x) * C.y\)我们发现就是把边设置成 \((A.…
今天考试的时候果然题目太难于是我就放弃了……转而学习了一下最小乘积生成树. 最小乘积生成树定义: (摘自网上一篇博文). 我们主要解决的问题就是当k = 2时,如何获得最小的权值乘积.我们注意到一张图可以有很多棵生成树,我们将每一棵生成树的权值记为(x, y),表示第一种权值之和为x, 第二种权值之和为y. 这样,很自然联想到二维平面上的坐标,每一棵生成树即为这个平面上的一个点.我们所想要寻找的点就是x * y最小的点.这样的点在什么位置?显然,若x1 <= x2, y1 <= y2,1号点的…
Luogu5540 最小乘积生成树 题目链接:洛谷 题目描述:对于一个\(n\)个点\(m\)条边的无向连通图,每条边有两个边权\(a_i,b_i\),求使\((\sum a_i)\times (\sum b_i)\)最小的生成树. 数据范围:\(n\le 200,m\le 10000,a_i,b_i\le 255\) 这题是一道非常妙的计算几何题目. 我们对于每个生成树,用\((\sum a_i,\sum b_i)\)这个二维平面上的点来表示它,那么就是求所有点中横坐标乘纵坐标的最小值. 画画…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值 v = (n-1条边的费用和)*(n-1条边的时间和),你的任务是求一个方案使得v最小. Input 第一行两个整数n,m,接下来每行四个整数a,b,c,t,表示有一条公路从城市a到城市b需要t时间和费用c O…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2395 [题目大意] 给出一张无向图,每条边上有a,b两个值,求生成树, 使得suma*sumb最小,在满足这个前提下保证suma最小. [题解] 把方案看成一个二维点,x=sum(a),y=sum(b) 答案一定在下凸壳上,找到l,r两个点,l是x最小的,r是y最小的 然后递归调用work(l,r):找到离该直线最远的点,那个点一定在下凸壳上 将边权设为(a,b)叉积(l-r),求出…
The NetLine company wants to offer broadband internet to N towns. For this, it suffices to constructa network of N-1 broadband links between the towns, with the property that a message can travelfrom any town to any other town on this network. NetLin…
https://www.lydsy.com/JudgeOnline/problem.php?id=2395 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边的费用和*n-1条边的时间和,你的任务是求一个方案使得v最小 参考:https://www.cnblogs.com/autsky-jadek/p/3959446.html 参考说的太详细了,还配了图,读不懂的应该不存在吧,已经…
妙啊,是一个逼近(?)的做法 把两个值最为平面上的点坐标,然后答案也是一个点. 首先求出可能是答案的点xy分别是按照c和t排序做最小生成树的答案,然后考虑比这两个点的答案小的答案,一定在xy连线靠近原电一侧(不过这部分并不全都能更新答案),然后最小的一定是距离xy连线最远的,设为点z,也就是三角形xyz面积最大,然后用叉积列出面积公式吗,按这个做一次最小生成树求出z并更新答案,然后递归处理(x,z)(z,y),直到z不在靠近原点一侧 #include<iostream> #include<…
题意:给定N点,M边,每条边有两个属性(a,b),现在让你选N-1条边出来,然后使得∑a*∑b最小.N<200,M<1e4: 思路:我们把∑a看成x,∑b看成y,那么一个方案对应一个二维坐标(x,y).假设我知道了其中两个方案[A,B],那么,如果另外一个方案C更优,则在二维平面上,C至少要满足在A和B的左边.然后[A,C],[C,B]继续下推. 这个有点像凸包的逼近,所以复杂度和凸包上的点数有关,其理论点数是sqrt(lnN)的.所以总的复杂度趋近于NlogN*sqrt(lnN): #inc…
bzoj3571 传送门http://www.lydsy.com/JudgeOnline/problem.php?id=3571 题解: ——————来自伟大的thy大神  http://blog.csdn.net/thy_asdf/article/details/50382556 思路:首先看到题目的这个形式,就可以想到最小乘积生成树 这题就是要求最小乘积匹配. 对于这一类问题,我们都可以把每种方案的x之和与y之和作为它的坐标(x,y) 要让乘积最小,那么可能的方案的坐标一定在一个下凸壳上.…
题意 有n个画框和n幅画.若第i幅画和第j个画框配对,则有平凡度Aij和违和度Bij,一种配对方案的总体不和谐度为∑Aij*∑Bij.求通过搭配能得到的最小不和谐度是多少. n <= 70. 分析 这题是最小乘积最大权匹配裸题,其做法类似最小乘积生成树. 每个方案可以表示为二维平面上的点,答案必然在下凸壳上. 具体要怎么找呢?其实是有一个这样的方法:找出横坐标或纵坐标最小的点a和b,找点的方法可以用KM. 找到这两个点就可以分治下去做了,找到离直线ab距离最大的点(当然要在直线ab下方). 列出…
思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上的点,再用km去找最远的点就行了. 然而几个月前就学过km且到现在还未写过一道km的题的我并不知道km如何对于负权给出最优解.... #define XX 某传统算法(例如:最小生成树,二分图最优带权匹配什么的) 顺便总结一下最小乘积XX 即对于XX引入两个权值的概念(或是多个权值,一般是两个),看…
问题描述 给两组数,各n个. 请调整每组数的排列顺序,使得两组数据相同下标元素对应相乘,然后相加的和最小.要求程序输出这个最小值. 例如两组数分别为:1 3 -5和-2 4 1 那么对应乘积取和的最小值应为: (-5) * 4 + 3 * (-2) + 1 * 1 = -25 输入格式 第一个行一个数T表示数据组数.后面每组数据,先读入一个n,接下来两行每行n个数,每个数的绝对值小于等于1000. n<=8,T<=1000 输出格式 一个数表示答案. 样例输入 2 3 1 3 -5 -2 4…
[题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.The first line of each case contains two integers N, M (2 ≤ N ≤ 50000, 1 ≤ M ≤ 100000) – numberof cities and roads. The next M lines describe the roads…
 算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4…
题意:求最大边与最小边差值最小的生成树.n<=100,m<=n*(n-1)/2,没有重边和自环. 题解: m^2的做法就不说了. 时间复杂度O(n*m)的做法: 按边排序,枚举当前最大的边. 那也就是说,把边排序之后从小到大编号,要在[1,r]这段区间内生成一棵最大边与最小边差值最小的生成树. 那每次生成肯定不行(这就是暴力m^2做法..),我们考虑继承. 假设[1,r-1]这段区间内的苗条树已经生成,那我们只需要把当前第r条边加进去. 加进去分两种情况: x和y还没有联通:直接加边 x和y已…
目录 1 问题描述 2 解决方案   1 问题描述 问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4 34 1 12 4 31 3 30 0 样…