Caffe训练好的网络对图像分类】的更多相关文章

对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/caffe.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <iosf…
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblogs.com/denny402/p/5083300.html,下面几乎是全文转载,有部分对自己踩过的坑的补充,向原作者致敬! 一.准备数据 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到我的网盘下载:http://pan.…
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并…
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本. 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况. 3.文件solver.prototxt和文件train_val.prototxt的配置问题,一般调节solver文件中的学习率base…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架. CUDA(Compute Unifined Device Architecture-计算统一设备框架):是显卡厂商NVIDIA推出的运算平台. CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题. CuDNN( CUDA Deep Neural N…
from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入normalization,例如BN.L2 norm等):2.更换参数初始化方法(对于CNN,一般用xavier或者msra的初始化方法):3.减小学习率.减小batch size:4.加入gradient clipping: 发布于 2016-09-04   仁孟     说明训练不收敛了, 学习率…
Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools/extra/parse_log.sh ./tools/extra/extract_seconds.py ./tools/extra/plot_training_log.py.example 日志重定向:在训练命令中加入一行参数,实现log日志定向到文件: caffe train --sover=/…
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-FeiLi, Marco Andreetto, Marc 'Aurelio Ranzato在2003年9月收集而成的.Caltech101包含101种类别的物体,每种类别大约40到800个图像,大部分的类别有大约50个图像.Caltech256包含256种类别的物体,大约30607张图像.图像如下图所示…