深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
To process specialized file formats (such as video) in Hadoop, you'd have to write a custom InputFormat and RecordReader that understands how to turn a video file into splits (the InputFormat) and then read splits into values (the RecordReader).在Hado…
1.java中==和equals和hashCode的区别 基本数据类型的比较的值相等.类的比较的内存的地址,即是否是同一个对象,在不覆盖equals的情况下,同比较内存地址,原实现也为 == ,如String等重写了equals方法.hashCode也是Object类的一个方法.返回一个离散的int型整数.在集合类操作中使用,为了提高查询速度.(HashMap,HashSet等比较是否为同一个)如果两个对象equals,Java运行时环境会认为他们的hashcode一定相等.如果两个对象不equ…
业务场景大概是这样,我需要在公司hadoop集群上对博文进行结巴分词.我的数据是存储在hive表格中的,数据量涉及到五百万用户三个月内发的所有博文. 首先对于数据来说,很简单,在hive表格中就是两列,一列代表的是uid,一列代表的是博文内容.举个例子如下: uid content 12345 今天天气真好啊 23456 中午的食物真不错啊 ... ... 对于hive表格,我在使用hadoop的时候,方法一般使用的是hive+python的形式,也就是从hive中一行行的读取数据,每一行都经过…
前言 原型模式(Prototype模式)是指:用原型实例指定创建对象的种类,并且通过拷贝这些原型,创建新的对象 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象,无需知道如何创建的细节. 工作原理:通过将一个原型对象传给那个要发动创建的对象,这个要发动创建的对象通过请求原型对象拷贝它们自己来实施创建,即 对象.clone() 形象的理解:孙大圣拔出猴毛,变出其他孙大圣 原型模式类图实例 Prototype:原型类,声明一个克隆自己的接口 ConcretePrototype:具…
Java中的多态 1 多态是什么 多态(Polymorphism)按字面的意思就是"多种状态".在面向对象语言中,接口的多种不同的实现方式即为多态.用白话来说,就是多个对象调用同一个方法,得到不同的结果. 2 多态的语法格式 父类类名 引用名称 = new 子类类名(); 当是多态时,该引用名称只能访问父类中的属性和方法,但是访问的时候,会优先访问子类重写以后的方法. 3 满足多态的条件 子类必须继承父类 子类必须重写父类的方法 父类引用指向子类对象,即:父类类名 引用名称 = new…
整理下,基本分两个方式: 一.对于大量大文件(大于block块设置的大小) 增大minSize,即增大mapred.min.split.size的值,原因:splitsize=max(minisize,min(maxsize,blocksize)),blocksize一般不会做修改. 在没有设置minisize,maxsize时,splitsize取blocksize. 二.对于大量小文件(小于block块设置的大小) 这种情况通过增大mapred.min.split.size不可行, 需要使用…
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduceTasks(int)控制reduce任务数量而言,控制map任务数量一直是一个困扰我的问题.好在经过很多摸索与实验,终于梳理出来,希望对在工作中进行Hadoop进行性能调优的新人们有个借鉴.本文只针对FileInputFormat的任务划分进行分析,其它类型的InputFormat的划分方式又各有不同.虽然如…
1.提出问题 在上篇博文中,提到了为什么要配置ssh免密码登录,说是Hadoop控制脚本依赖SSH来执行针对整个集群的操作,那么Hadoop中控制脚本都是什么东西呢?具体是如何通过SSH来针对整个集群的操作?网上完全分布模式下Hadoop的搭建很多,可是看完后,真的了解吗?为什么要配置Hadoop下conf目录下的masters文件和slaves文件,masters文件里面主要记录的是什么东西,slaves文件中又记录的是什么东西,masters文件和slaves文件都有什么作用?好,我看到过一…
Hadoop中的Map Reduce框架依赖InputFormat提供数据,依赖OutputFormat输出数据,每一个Map Reduce程序都离不开它们.Hadoop提供了一系列InputFormat和OutputFormat方便开发,本文介绍几种常用的: TextInputFormat 作为默认的文件输入格式,用于读取纯文本文件,文件被分为一系列以LF或者CR结束的行,key是每一行的位置偏移量,是LongWritable类型的,value是每一行的内容,为Text类型. KeyValue…
Hadoop中决定map个数的的因素有几个,由于版本的不同,决定因素也不一样,掌握这些因素对了解hadoop分片的划分有很大帮助, 并且对优化hadoop性能也很有大的益处. 旧API中getSplits方法: public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException { FileStatus[] files = listStatus(job); // Save the number of input…
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数 long maxSize = getMaxSplitSize(job); //getMaxSplitSize为用户设置的最大分片数,默认最大为long 922337…
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe…
一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个m…
  简介 Google Analytics(分析)不仅可以帮助您衡量销售与转化情况,而且能为您提供新鲜的深入信息,帮助您了解访问者如何使用您的网站,他们如何到达您的网站,以及您可以如何吸引他们不断回访. 大致功能介绍 1. 报告时间范围选择 默认情况下,当我们浏览报告时,看到的是上个月的情况,假设今天是本月X日,那么我们再默认报告中看到的数据日期范围就是上个月X日到本月X日-1天的数据.你可以点击报告右上角的日期范围进行日期更改,你可以选择只关注某一天的网站情况,也可以选择某个整月或者一段自定义…
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个ma…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数…
原文链接:https://blog.csdn.net/lylcore/article/details/9136555     hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数…
简介: 最近在写MapReduce程序处理日志时,需要解析JSON配置文件,简化Java程序和处理逻辑.但是Hadoop本身似乎没有内置对JSON文件的解析功能,我们不得不求助于第三方JSON工具包.这里选择json-simple实现我们的功能. 在Hadoop上执行Java程序的命令如下所示: [hadoop@localhost]$ hadoop jar my-mapreduce.jar my-mapreduce.jar是我们进行日志处理的MapReduce程序.现在假定我们需要在其中处理JS…
如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision Layers 1.1 卷积层(Convolution) 类型:CONVOLUTION 例子 layers { name: "conv1" type: CONVOLUTION bottom: "data" top: "conv1" blobs_lr:…
转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = max {mapred.min.split.size, minSplitSize} splitSize = max (minSize, min(goalSize, dfs.block.size)) totalSize是一个JOB的所有map总的输入大小,即Map input bytes.参数map…
大家好,我是冰河~~ 在<高并发之--通过ThreadPoolExecutor类的源码深度解析线程池执行任务的核心流程>一文中我们深度分析了线程池执行任务的核心流程,在ThreadPoolExecutor类的addWorker(Runnable, boolean)方法中,使用CAS安全的更新线程的数量之后,接下来就是创建新的Worker线程执行任务,所以,我们先来分析下Worker类的源码. Worker类分析 Worker类从类的结构上来看,继承了AQS(AbstractQueuedSync…
最近开始看 Hadoop 的一些源码,展开hadoop的源码包,各个组件分得比较清楚,于是开始看一下 IPC 的一些源码. IPC模块,也就是进程间通信模块,如果是在不同的机器上,那就可以理解为 RPC 了,也就是远程调用.事实上, hadoop 中的 IPC 也就是基于 RPC 实现的. 使用 sloccount 统计一下 ipc 包中代码的行数,一共是 2884 行.也就是说,IPC 作为hadoop的基础组件,仅仅用了不到3000行的代码,就完成得稳定且富有效率. IPC 中的关键类关系:…