Batch Normalization和Layer Normalization】的更多相关文章

深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更新.为了训练好模型,我们需要谨慎初始化网络权重,调整学习率等. 本篇博客总结几种归一化办法,并给出相应计算公式和代码. 归一化层,目前主要有这几个方法,Batch Normalization(2015年).Layer Normalization(2016年).Instance Normalizati…
Batch Normalization:对一个mini batch的样本,经过一个nueron(或filter)后生成的feature map中的所有point进行归一化.(纵向归一化) Layer Normalization:对单个样本,经过一个卷积层的所有neuron(或filter)后生成的feature map中的所有point进行归一化.(横向归一化)…
Layer Normalization 总览 针对同一通道数的图片的H*W进行层正则化,后面的γ和β是可以学习的参数,其中这两个的维度和最后一个的维度相同 例如特征图矩阵维度为[3, 577, 768], 那么γ和β的维度均为Tensor(768,) step1:代码示例1 import torch import torch.nn as nn input = torch.tensor( [ [ [ [2., 2.], [3., 3.] ], [ [3., 3.], [2., 2.] ] ], […
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). Batch Normalization是对每个神经元做归一化(cnn是对每个feature map做归一化),主要是为了解决internal covariate shift的问题. 作者提出,对于RNN这种没法用mini-batch的网络,没办法用B…
加速网络收敛——BN.LN.WN与selu 自Batch Norm出现之后,Layer Norm和Weight Norm作为Batch Norm的变体相继出现.最近又出来一个很”简单”的激活函数Selu,能够实现automatic rescale and shift.这些结构都是为了保证网络能够堆叠的更深的基本条件之一.除了这四种,还有highway network与resnet. Batch Norm BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output…
一.结论 Batch Norm一般用于CV领域,而Layer Norm一般用于NLP领域 Batch Norm需要计算全局平均,而Layer Norm不需要计算全局平均 二.Batch Norm Batch Norm原理: BatchNorm把一个batch中同一通道的所有特征(如上图红色区域)视为一个分布(有几个通道就有几个分布),并将其标准化.这意味着: 不同图片的的同一通道的相对关系是保留的,即不同图片的同一通达的特征是可以比较的 同一图片的不同通道的特征则是失去了可比性 用于CV领域的解…
深度学习模型中的Normalization 数据经过归一化和标准化后可以加快梯度下降的求解速度,这就是Batch Normalization等技术非常流行的原因,Batch Normalization使得可以使用更大的学习率更稳定地进行梯度传播,甚至增加网络的泛化能力. 1 什么是归一化/标准化 Normalization是一个统计学中的概念,可以称它归一化或者规范化,它并不是一个完全定义好的数学操作(如加减乘除).它通过将数据进行偏移和尺度缩放调整,在数据预处理时是非常常见的操作,在网络的中间…
Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN. 我们根据论文的结构图,一步一步使用 PyTorch 实现这个Transformer模型. Transformer架构首先看一下transformer的结构图: 解释一下这个结构图.首先,Transformer模型也是使用经典的encoer-decoder架构,由encode…
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3*3卷积代替 Inception V1中的 5*5大卷积.这样做在减少参数(3*3*2+2 –> 5*5+1)的同时可以建立更多的非线性变换,增强网络对特征的学习能力.如下图所示,2个 3*3卷积的效果与一个 5*5 卷积的效果类似: 在 Inception V1中加入BN层,以减少 Internal…
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Normalization的作用 几个问题 卷积层如何使用BatchNorm? 没有scale and shift过程可不可以? BN层放在ReLU前面还是后面? BN层为什么有效? 参考 博客:blog.shinelee.me | 博客园 | CSDN 动机 在博文<为什么要做特征归一化/标准化? 博客园…