官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与否,分类讨论 g->没有分割线方案数(其实也可以变成贡献,但是太简单,之后乘上(i+0/1/2)也方便) f0->有分割线,两边都没有选所有情况的贡献的和 f1->有分割线,两边选择了一个所有情况的贡献的和 f2->有分割线,两边都选择了所有情况的贡献的和 最后对于环 考虑除了中间割线…
正题 题目链接:https://www.luogu.com.cn/problem/CF848E 题目大意 \(2n\)个花排成一个圆环,\(n\)种颜色每种两个,要求两个相同颜色之间最小距离为\(1,2\)或\(n\). 对于一种染色方案的权值为:删除掉距离为\(n\)的颜色后,剩下的连续段长度的乘积. 求所有方案的染色之和对\(998244353\)取模. \(1\leq n\leq 50000\) 解题思路 环好像很麻烦,先考虑线段上的,现在有两个长度为\(n\)的数列,然后距离为\(n\)…
Codeforces 题目传送门 & 洛谷题目传送门 神仙 D1E,一道货真价实的 *3400 %%%%%%%%%%%% 首先注意到一点,由于该图为中心对称图形,\(1\sim n\) 的染色情况一定与 \(n+1\sim 2n\) 的染色情况完全相同,也就是说我们只需考虑 \(1\sim n\) 的染色情况,\(n+1\sim 2n\) 部分各段的长度一定与 \(1\sim n\) 部分的长度完全相同,权值平方一下即可. 我们不妨假设 \(1\) 与 \(n+1\) 之间连了一条长度为 \(n…
题目传送门 题目大意:有$n$个小岛,每个小岛上有$a_{i}$个城市,同一个小岛上的城市互相连接形成一个完全图,第$i$个小岛的第$a_{i}$个城市和第$i+1$个小岛的第$1$个城市连接,特别地,第$n$个小岛的第$a_{n}$个城市和第$1$个小岛的第$1$个城市连接.现在要断掉图中的一些边,保证任意两个城市只有一条路径或者不连通,求合法的断边方案总数,$n,a_{i}<=1e5$ 完全不会(喷血 我们对每个小岛单独讨论 如果任意两个城市只有一条路径或者不连通,那么这张图只能是一个森林…
题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之积 求长度为$n$所有排列的权值之和,$n\leq 1e5$,$1e4$组询问 原题面描述不清楚啊..害得我白想了30min 和ZOJ3874一样都是排列$DP$问题 $DP$方程还是不难想的 假设现在有一个$i-1$的排列,当我们把$i$某个位置上时 $i$前面的数都会和$i$连通,$i$后面的数…
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易发现性质,同一联通块内的点一定是连续标号的,否则无解 然后我就不会了 好神的$NTT$优化$DP$啊 根据上面的性质,联通块之间是互不影响的,所以我们对每个联通块分别统计答案再相乘 定义$f[i]$表示$i$个点构成的合法联通块,可能的排列数 一个合法联通块的所有元素一定在同一联通块内,说明不可能存…
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{\binom{N}{2}}$,要求的是简单联通图,所以可以用总量减不连通的. 不连通的可以通过枚举与某个固定点的联通的点的数量得到$tot=\sum _{i=1} ^{N} \binom{N-1}{i-1}*dp[i]*2^{\binom{N-i}{2}}$ 其中$dp[i]$表示的就是$i$个点的…
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. \(\color{#0066ff}{输入格式}\) 三个整数n,a,b \(\color{#0066ff}{输出格式}\…
传送门: http://codeforces.com/problemset/problem/848/E 题解: 假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的. 记最大的i满足i到i+n有一条边,那么旋转的方案数是n-i 考虑动态规划: 设\(g[i]\)表示i个点,只用相邻或隔一个去拼接的方案数. 转移显然有\(g[i]=g[i-2]+g[i-4]\). 设\(f[i][0/1][0/1]\)表示1有连对面的,n+1有连对面的,2-n填,前面后面是否要伸出去的方案…
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序列,那么排列中每个极长的连续阶梯段就已经确定了,具体来说,由于显然极大的连续段之间不能相交,因此假设 \(a\) 为 \(p\) 的阶梯序列,对于 \(a\) 数组中每个值相同的极大连续段 \([l,r]\),显然我们只能每 \(a_l\) 个元素将其划分成 \([l,l+a_l-1],[l+a_l,l+2…
题目大意 有一个无限长的二进制串,初始时它的每一位都为 \(0\).现在有 \(m\) 个操作,其中第 \(i\) 个操作是将这个二进制串的数值加上 \(2^{a_i}\).我们称每次操作的代价是这次操作改变的位的数量. 我们以一定概率执行这些操作:第 \(i\) 个操作有 \(p_i\) 的概率执行,否则不执行. 请求出所有执行的操作的代价和的期望. \(n\leq 100000,m\leq 200000,0\leq a_i\leq n\) 题解 容易发现,如果进行了 \(k\) 次操作且把这…
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和),以及成功操作次数,就行了. 然后根据期望的线性性,我们可以从低到高按位考虑贡献. 考虑一个递推:\(f(i, j)\) 表示从后往前第 \(i\) 位总共被改变 \(j\) 次的概率,那么有两种转移: 进位:\(\displaystyle f(i - 1, j) \to f(i, \lfloor…
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespa…
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\begin{bmatrix} n \\ i \end{bmatrix}x^{i}\] 分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\) 其实还有比较优美的倍增\(fft\)的\(O(…
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_{x = 1}^{n} a_x^{i}}{i!} \centerdot \frac{\sum\limits_{x = 1}^{n} b_x^{k - i}}{(k - i)!})\] 是一个卷积的形式 我们只需对所有\(k\)预处理出\(\sum\limits_{i = 1}^{n} a_i^{k}…
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\limits_{i = 1}^{n} w_i\),令\(S\)表示选出那几个在\(i\)之后的\(w_i\)和 我们淘汰人之后概率的分母就改变了,很不好求 我们考虑转化一下问题,每个人被杀后依旧存在,只不过再次选中他时再选一次,是等价的 那么此时那几个人在\(1\)之后的概率 \[ \begin{al…
题目链接 hdu5279 题解 给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过\(1\),求方案数 容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问\(n\)个点有标号森林的个数 设\(f[i]\)表示\(i\)个点有标号森林的个数 枚举第一个点所在树大小,我们只需求出\(n\)个点有多少种树,由\(purfer\)序容易知道是\(n^{n - 2}\) 那么有 \[f[n] = \sum\limits_{i = 1}^{n} {n - 1 \…
题目链接 ZOJ3874 题意简述: 在一个序列中,两点间如果有边,当且仅当两点为逆序对 给定一个序列的联通情况,求方案数对\(786433\)取模 题解 自己弄了一个晚上终于弄出来了 首先\(yy\)一下发现一个很重要的性质: 联通块内的点编号必须是连续的 证明: 假设一个联通块编号不连续,设\(a\),\(b\)分别为联通块左侧和联通块右侧中的一个点,\(x\)为\(a\),\(b\)之间不在该联通块内的点 那么显然有\(a > b\),\(a < x\),\(x < b\) 即\(…
题意  给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比较好求,根据prufer序列可以知道n个点形成的无根树的个数为$n^{n-2}$ 那么现在问题变成求n个点形成的连通图的个数. 图有连通和不连通的,那么就是图的总数减去不连通的图的总数. 图的总数很简单,$m^{\frac{n(n-1)}{2}}$,那么现在要求不连通的图的总数. 设$f(n)$为$…
题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{{n \choose 2}}\)的,考虑用总数减去不连通的 既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子: \[f[n] = 2^{{n \choose 2}} - \…
题目链接  2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$个家庭里面选出$k_{1}$对近亲,在第$2$个家庭里面选出$k_{2}$对近亲......在第$n$个家庭里面选出$k_{n}$对近亲, 剩下那些人自由组合的话,那么最后这种方案至少会有$∑k$对近亲. 说是至少,因为同一个家庭里面没被强行选择的男女还是可能被组到了一起. 那么考虑如何求至少有$k…
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg…
思路: 显然每个子图内都是森林 去掉所有子图1和n都连通且每条大边都存在的情况 直接DP上 NTT优化一波 注意前两项的值.. //By SiriusRen #include <bits/stdc++.h> using namespace std; ,N=; int cases,n,R[N],fac[N],inv[N],A[N],B[N],h[N],f[N],g[N],jy; int power(int x,int y){ ; while(y){ )r=1ll*x*r%mod; x=1ll*x…
题目来源:noi2019模拟测试赛(一) 题意: 题解: 这场三道神仙概率期望题……orzzzy 这题暴力$O(n^2)$有30分,但貌似比正解更难想……(其实正解挺好想的) 注意到一次操作实际上就是在一段区间里乘上了一个形如$px+(1-p)$的多项式,设把所有多项式合并得到一个多项式$F(x)$,那么我们要求的答案实际上就是: $$[x^k]F(x)$$ 那么可以先离散化坐标,然后开一棵线段树,用vector维护每个点(即最小不可再分的区间)上要乘的多项式,最后dfs一遍线段树,用分治NTT…
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为\(\frac {a_i}k\).求第\(1\)个人最后被打死的概率. 一个重要性质 对于这题,首先我们可以发现,由于一个人死后,其他人被打中概率的分母会受到影响,产生了后效性,似乎很不可维护. 因此我们需要知道一个重要性质:设\(tot=\sum_{i=1}^na_i\),则题意可以转化为,每个人…
传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容易发现这并不影响最终结果. 然而光想到这个好像没什么用? 再考虑容斥:枚举哪些人在1之后被打死,其他随意.设在1后面的人的权值为\(S\),总权值为\(sum\),那么概率就是 \[ \begin{align*} &\sum_{i=0}^{\infty} (1-\frac{w_1+S}{sum})^…
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\)的做法,此时我们考虑一个强联通块的贡献,注意到竞赛图中强联通块的会构成一条链的形式,枚举一个大小\(S\),那么此时联通块内到联通块外的边方向确定,那么这个联通块产生贡献的的概率就是\(\frac{1}{2}^{S(n-S)}\),选出这个联通块的方案就是\(\binom{n}{i}\). 那么答案…
正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\leq 10^5,0\leq k\leq 10^5,1\leq m\leq 20000,\sum_{i=1}^ma_i=n\) 解题思路 \(k\)对相邻的相同,就是可以分成有\(n-k\)组相同的. 考虑这个问题,把每组牌分成若干组插到不同位置,先不考虑这样可能插到相邻位置的情况我们后面可以再用容…
正题 题目链接:https://www.luogu.com.cn/problem/CF960G 题目大意 求有多少个长度为\(n\)的排列,使得有\(A\)个前缀最大值和\(B\)个后缀最大值. \(0\leq n,A,B\leq 10^5\) 解题思路 显然的是把最大的数两边然后左边的是前缀最大值,右边的是前缀最小值. 然后考虑两个前缀最大值之间其实可以插任何数字,但是最大的一定要排在前面. 其实就是这些数字分成若干个圆排列的个数,就是第一类斯特林数. 枚举左右两边的数量就有 \[\sum_{…