目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting Misclassified Examples[C]. international conference on learning representations, 2020. @article{wang2020improving, title={Improving Adversarial Robustn…
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via channel-wise activation suppressing. In International Conference on Learning Representations (ICLR), 2021. Yan H., Zhang J., Niu G., Feng J., Tan V.,…
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chiang M. and Mittal P. Improving adversarial robustness using proxy Distributions. arXiv preprint arXiv: 2104.09425, 2021. 概 本文利用GAN生成数据, 并利用这些数据进行对抗训练,…
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020. 概 作者改进了PGD攻击方法, 并…
目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustness and Interpretability. arXiv preprint axXiv 2009.04923, 2020. 概 也算是一种对抗训练吧, 有区别的是构造对抗样本的方式, 以及用的是惩罚项而非仅用对抗样本训练. 主要内容 考虑干净样本\(x\)和扰动\(v\), 则我们自然希望 \…
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized Smoothing. International Conference on Machine Learning (ICML), 2019. @article{cohen2019certified, title={Certified Adversarial Robustness via Randomiz…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com/ssharmin/spikingNN-adversarial-attack Abstract 在最近对可信任的神经网络的探索中,我们提出了一个潜在的候选,即脉冲神经网络(SNN)之于对抗攻击的内在鲁棒性.在这项工作中,我们证明对CIFAR数据集上的深度VGG和ResNet结构,在基于梯度的攻击下,…
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gaussian Mixture Model (GMM) SelectiveNet Combined Abstention Robustness Learning (CARL) Adversarial Training with a Rejection Option Energy-based Out-of…
转自:http://www.cleverhans.io/security/privacy/ml/2017/02/15/why-attacking-machine-learning-is-easier-than-defending-it.html   Is attacking machine learning easier than defending it? Feb 15, 2017 by Ian Goodfellow and Nicolas Papernot In our first post…
About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been…