SRGAN】的更多相关文章

论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈给生成器 srgan论文是建立在gan基础上的,利用gan生成式对抗网络,将图片重构为高清分辨率的图片. github上有开源的srgan项目.由于开源者,开发时考虑的问题更丰富,技巧更为高明,导致其代码都比较难以阅读和理解. 在为了充分理解这个论文.这里结合论文,开源代码,和自己的理解重新写了个s…
一.理论 关于SRGAN的的论文中文翻译网上一大堆,可以直接读网络模型(大概了解),关于loss的理解,然后就能跑代码 loss  = mse + 对抗损失 + 感知损失   : https://blog.csdn.net/DuinoDu/article/details/78819344 loss不要乱改,尽量按照原来论文的来,我尝试了  0.2*MSE+0.4*感知损失+0.4*对抗损失 , 结果loss很奇怪,效果也很差 SRGAN的3个重要loss: 二.代码及其理解(源码) (1)文件结…
目录 概 主要内容 代码 Ledig C., Theis L., Huszar F., Caballero J., Cunningham A., Acosta A., Aitken A., Tejani A., Totz J., Wang Z. & Shi W. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CVPR, 2017. 概 利用GAN进行超分辨率. 主要内容…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用…
语音识别 TensorFlow 1.x中提供了一个语音识别的例子speech_commands,用于识别常用的命令词汇,实现对设备的语音控制.speech_commands是一个很成熟的语音识别原型,有很高的正确率,除了提供python的完整源码,还提供了c/c++的示例程序,方便你移植到嵌入设备及移动设备中去. 官方提供了关于这个示例的语音识别教程.不过实际就是一个使用说明,没有对代码和原理做过多解释. 这个程序相对前面的例子复杂了很多,整体结构.代码.算法都可以当做范本,我觉得我已经没有资格…
1.摘要 近年来,深度卷积神经网络(CNN)方法在单幅图像超分辨率(SISR)领域取得了非常大的进展.然而现有基于 CNN 的 SISR 方法主要假设低分辨率(LR)图像由高分辨率(HR)图像经过双三次 (bicubic) 降采样得到,因此当真实图像的退化过程不遵循该假设时,其超分辨结果会非常差.此外,现有的方法不能扩展到用单一模型解决多种不同的图像退化类型.为此,提出了一种维度拉伸策略使得单个卷积超分辨率网络能够将 SISR 退化过程的两个关键因素(即模糊核和噪声水平)作为网络输入.归因于此,…
超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像.SR可分为两类:    1. 从多张低分辨率图像重建出高分辨率图像    2. 从单张低分辨率图像重建出高分辨率图像.基于深度学习的SR,主要是基于单张低分辨率的重建方法,即Single Image Super-Resolution (SISR) 一.基于深度学习的超分辨率重建方法整理 1.SRCNN Super-Resolution Convolutional Neural Network(…
图像超分辨重构的原理,输入一张像素点少,像素较低的图像, 输出一张像素点多,像素较高的图像 而在作者的文章中,作者使用downsample_up, 使用imresize(img, []) 将图像的像素从原理的384,384降低到96, 96, 从而构造出高水平的图像和低水平的图像 作者使用了三个部分构成网络, 第一部分是生成网络,用于进行图片的生成,使用了16层的残差网络,最后的输出结果为tf.nn.tanh(),即为-1, 1, 因为图像进行了-1,1的预处理 第二部分是判别网络, 用于进行图…
本文译自2018CVPR DeepBack-Projection Networks For Super-Resolution 代码: github 特点:不同于feedback net,引入back projection net 结果:state of the art,尤其在大尺度上面,例如x8倍 摘要: 近来提出的前馈网络结构学习低分辨输入的表征和由SR(low-resoluton)至HR(high-resolution)的非线性映射.然而这种方法并没有完整处理SR和HR图像的相互依赖.我们提…