Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\)为我们枚举的生成树的边集. \[ Ans=\sum_{E}(\sum_{i\in E}w_i)^k\\ =\sum_E \prod_{i\in E} \binom{k}{a_i}w_i^{a_i}[\sum_{i\in E}a_i=k]\\ =\sum_E \frac{1}{k!} \prod_{i…
P5296 [北京省选集训2019]生成树计数 题意 求一个带权无向图所有生成树边权和的 \(k\) 次方的和. 思路 首先有一个结论:\(a^i\) 的 EGF 卷 \(b^i\) 的 EGF 等于 \((a+b)^i\) 的 EGF.即: \[F(a)=\sum_{i=0}\frac{a^ix^i}{i!}\\ F(a+b)=F(a)*F(b) \] 证明如下: \[(a+b)^k=\sum_{i=0}^k{k\choose i}a^ib^{k-i}=\sum_{i=0}^k\frac{k!…
题面传送门 神题. 考虑将所有连通块缩成一个点,那么所有连好边的生成树在缩点之后一定是一个 \(n\) 个点的生成树.我们记 \(d_i\) 为第 \(i\) 个连通块缩完点之后的度数 \(-1\),那么共有 \(\prod\limits_{i=1}^na_i^{d_i+1}\times\dfrac{(n-2)!}{\prod\limits_{i=1}^nd_i!}\) 个这样的生成树,稍微解释一下这个柿子,因为每个连通块的每条边都有可能是由其中 \(a_i\) 个点中任意一点连出的,因此每个连…
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…
自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le B\)),那么对答案的贡献就是 \[ {B-x-y+n-1\choose n-1} \] 根据范德蒙德恒等式 \[ {a+b\choose n} =\sum_{i=0}^n {a\choose i}{b\choose n-i} \] 所以上面可以拆开成 \[ \sum_{i=0}^{n-1} {C…
一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cnblogs.com/zj75211/p/8039443.html (Matrix-Tree定理) https://blog.csdn.net/u011815404/article/details/99679527(无向图生成树/MST计数) https://www.cnblogs.com/yangs…
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status] Description  给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Input 3 Sample Output 16 HINT   Source 分析:从图中可以很容易看出,答…
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[v][u]=-1 矩阵对角线为点的度数 2.求n-1阶主子式 的行列式的绝对值 去掉第一行第一列 初等变换消成上三角矩阵 对角线乘积为行列式 #include <bits/stdc++.h> using namespace std; const double eps = 1e-8; const i…
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include <cstdio> #include <cstring> #include <algorithm> #define N 101 #define eps (1e-8) #define mem(x,v) memset(x,v,sizeof(x)) typedef long lon…
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只有一条路径. \(Solution\) 生成树计数 直接上Matrix Tree 无解情况别忘了判 MatrixTree定理大体见这吧,证明别的应用什么的先不管了. 基尔霍夫矩阵=度数矩阵-边矩阵. #include <cmath> #include <cstdio> #include…
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Problem 1494. -- [NOI2007]生成树计数 1494: [NOI2007]生成树计数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1024  Solved: 592[Submit][Status][Discuss] Description 最…
Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\(n\)个点,两两之间有一条边,现在切断\(m\)条边,求剩下的图中有多少种不同的生成树. 题解: 生成树计数 做这道题,需要三个预备知识: \(Kirchhoff\)矩阵 首先先构造两个矩阵 度数矩阵D:是一个\(N×N\)的矩阵,其中 \(D[i][j]=0(i≠j)\),\(D[i][i]=i\…
[BZOJ1494][NOI2007]生成树计数(动态规划,矩阵快速幂) 题面 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为n. ·n个结点的完全图的生成树个数为n^(n-2).这两个发现让小栋欣喜若狂,由此更加坚定了他继续计算生成树个数的 想法,他要计算出各种各样图的生成树数目.一天,小栋和同学聚会,大家围坐在一张大圆桌周围.小栋看了看, 马上想到了生成树问题.如果把每个同学看成一个结点,邻座(结点间距离为1)的同学间…
这道题第一眼是生成树计数,n是100,是可以用O(n^3)的求基尔霍夫矩阵的n-1阶的子矩阵的行列式求解的,但是题目中并没有说取模之类的话,就不好办了. 用高精度?有分数出现. 用辗转相除的思想,让它不出现分数.但过程中会出现负数,高精度处理负数太麻烦. 用Python打表?好吧,Python还不熟,写不出来..... 所以,如果这道题我考场上遇到,最多用double骗到n<=20的情况的部分分. 最终只能求助于题解了... 好像是通过观察行列式的特点,推导出关于答案f(n)的递推式(f(n)=…
轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示 现给定n(N<=100),编程计算有多少个不同的n轮状病毒 裸的生成树计数,需要高精,同时需要特判2的重边情况 /**************************************…
此类题是给定一个无向图,求所有生成树的个数,生成树计数要用到Matrix-Tree定理(Kirchhoff矩阵-树定理) G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0:当i=j时,dij等于vi的度数 G的邻接矩阵A[G]也是一个n*n的矩阵, 并且满足:如果vi.vj之间有边直接相连,则aij=1,否则为0 我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为:G的所有不同的生成树的个…
题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边,没说的就是有边,用Matrix-Tree定理,很容易就能得到答案,注意题目给定的可能有重复的. 对于基尔霍夫矩阵,就是度数矩阵,减去邻接矩阵,一处理就OK了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #i…
Highways 题目链接:https://vjudge.net/problem/SPOJ-HIGH Description: In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds whi…
Lightning Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2465    Accepted Submission(s): 912 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4305 Description: There are N robots standing on the…
Organising the Organisation 题目链接:https://vjudge.net/problem/UVA-10766 Description: I am the chief of the Personnel Division of a moderate-sized company that wishes to remain anonymous, and I am currently facing a small problem for which I need a skil…
[BZOJ1494] [NOI2007]生成树计数 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现:·n个结点的环的生成树个数为n.·n个结点的完全图的生成树个数为n^(n-2).这两个发现让小栋欣喜若狂,由此更加坚定了 他继续计算生成树个数的想法,他要计算出各种各样图的生成树数目.一天,小栋和同学聚会,大家围坐在一张大圆桌周围.小栋看了看,马上想到了生成树问题. 如果把每个同学看成一个结点,邻座(结点间距离为1)的同学间连一条边,就变成了一个环.可是,…
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一个环,如果还要维护处树的特点 那么就要在这个环上删去一条边,这样他还是树,删掉的边显然是这条链上权值最大边更可能形成次小生成树.那么就有2中方法可以做. 第一种PRIM在prim时候直接可以做出这个从I到J的链上权值最大的值MAX[i][j]; 同时可以用kruskal同样方式标记树边,然后DFS跑…
1494: [NOI2007]生成树计数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 451[Submit][Status][Discuss] Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为n. ·n个结点的完全图的生成树个数为n^(n-2).这两个发现让小栋欣喜若狂,由此更加坚定了他继续计算生成树个数的 想法,他要计算出各种各样图的生成树数目.一天…
题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhoff矩阵,利用Matrix_tree定理求解. Kirchhoff矩阵:假设G为n*n矩阵,C为G的入度矩阵(i==j时,C[i][j]等于i的入度;i!=j时,C[i][j]等于零),A为G的邻接矩阵,那么就有Kirchhoff矩阵等于C-A. Matrix_tree定理:G的不同生成树的个数等于其…
这个题是生成树计数的裸题,中间构造基尔霍夫矩阵,然后构成行列式,再用高斯消元就行了.这里高斯消元有一些区别,交换两行行列式的值变号,且消元只能将一行的数 * k 之后加到别的行上. 剩下就没啥了... 找到一个写的特别详细的. il int det() { ; ; i <= sz; ++i) { // 当前在消第i个(i,i) , t; j <= sz; ++j) { // 把它下面对应的位置消成0 while (m[j][i]) { // 直到为0 t = m[i][i] / m[j][i]…
雅礼集训2019 D7T2 Subsequence 直接贴题解: 平衡树代码: #include<bits/stdc++.h> #define ll long long #define N 100005 using namespace std; inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&a…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
题解 我,理解题解,用了一天 我,卡常数,又用了一天 到了最后,我才发现,我有个加法取模,写的是while(c >= MOD) c -= MOD 我把while改成if,时间,少了 六倍. 六倍. 六倍!!!! maya我又用第一次T的代码改掉了while,我第一次T的代码也A了= = 那我,改单位复根,FFT循环展开,分治内部循环展开,为了啥= = 好吧,但是我最后上榜了...LOJ第四的样子.. \(\prod_{i = 1}^{N} d_{i}^{m}\sum_{i = 1}^{N}d_{…
传送门 好神仙的题目--又一次有了做一题学一堆的美好体验 据说本题有第二类斯特林数+分治\(FFT\)的做法,然而咱实在看不懂写的是啥,题解贴这里,有兴趣的可以自己去瞅瞅,看懂了记得回来跟咱讲讲 前置芝士 \(prufer\)序列 \(prufer\)序列是个啥? 对于一棵无根树,我们找到它的标号最小的叶子,删去它,并记下与它相邻的节点的标号.重复这个过程直到树上的节点数为\(2\)为止.这个时候我们得到了一个长度为\(n-2\)的序列就是这棵无根树的\(prufer\)序列 很明显,每一棵无根…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ335.html 前言 CLY大爷随手切这种题. 日常被CLY吊打系列. 题解 首先从 pruffer 编码的角度考虑这个问题. pruffer 编码的长度为 $n-2$ ,如果点 $i$ 在 pruffer 编码中出现了 $d_i - 1$ 次,那么点 $i$ 的度数就是 $d_i$ ,对答案的贡献次数就是 $\binom {n-2}{d_i}a_i ^ {d_i}$ . 于是自然想到用 EGF 做这个题.设 $$f_…