0901-生成对抗网络GAN的原理简介】的更多相关文章

0901-生成对抗网络GAN的原理简介 目录 一.GAN 概述 二.GAN 的网络结构 三.通过一个举例具体化 GAN 四.GAN 的设计细节 pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html 一.GAN 概述 GAN(生成对抗网络,Generative Adversarial Networks) 的产生来源于一个灵机一动的想法:What I cannot create, I do not understand.(…
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…
GAN原理 生成对抗网络GAN由生成器和判别器两部分组成: 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像.训练判别器使得对于真实图像,它输出的概率值接近1,而对于虚假图像则接近0 生成器与判别器正好相反,通过训练,它输出判别器赋值概率接近1的图像.生成器需要产生更加真实的输出,从而欺骗判别器 在GAN中要同时使用两个优化器,分别用来最小化判别器和生成器的损失 Batch Normalization Batch Normalizat…
生成对抗网络的概念 上一篇中介绍的VAE自动编码器具备了一定程度的创造特征,能够"无中生有"的由一组随机数向量生成手写字符的图片. 这个"创造能力"我们在模型中分为编码器和解码器两个部分.其能力来源实际上是大量样本经过学习编码后,在数字层面对编码结果进行微调,再解码生成图片的过程.所生成的图片,是对原样本图的某种变形模仿. 今天的要介绍的生成对抗网络(GAN)也具备很类似的功能,所建立的模型,能够生成非常接近样本图片的结果. 相对于VAE,生成对抗网络GAN更接近一…
生成对抗网络(GAN)由2个重要的部分构成: 生成器G(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器 判别器D(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据” 生成对抗网络的工作过程: 第一阶段:固定判别器D,训练生成器G 初始化判别器D,让一个生成器G不断生成“假数据”,然后给这个判别器D去判断. 一开始,生成器G还很弱,所以很容易被判断出是假的. 但是随着不断的训练,生成器G技能不断提升,最终骗过了判别器…
基本思想 GAN全称生成对抗网络,是生成模型的一种,而他的训练则是处于一种对抗博弈状态中的. 譬如:我要升职加薪,你领导力还不行,我现在领导力有了要升职加薪,你执行力还不行,我现在执行力有了要升职加薪,通过这样不断的努力和被拒绝,最后的最后你要不离职了要不升职加薪了. 这个例子中,个人的能力在不断的变化,领导的定义也在不断变化,选领导要通过不断的对比观察,你要通过不断的训练和实践,处于一种对抗博弈中. 基本结构 GAN的主要结构包括一个生成器G(Generator)和一个判别器D(Discrim…
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter7-GAN生成动漫头像 GAN解决了非监督学习中的著名问题:给定一批样本,训练一个系统能够生成类似的新样本 生成对抗网络的网络结构如下图所示: 生成器(generator):输入一个随机噪声,生成一张图片 判别器(discriminator):判断输入的图片是真图片还是假图片 训练判别器D时,需要利用生成器G生成的假图片和来自现实世界的真图片:训练生成器时,只需要使用噪声生…
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命.这场革命产生了一些重大的技术突破.Ian Goodfellow等人在"Generative Adversarial Networks"中提出了生成对抗网络.学术界和工业界都开始接受并欢迎GAN的到来.GAN的崛起不可避免. 首先,GAN最厉害的地方是它的学习性质是无监督的.GA…
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的. 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程.整个网络训练的过程中, 两个模块的分工 判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假) 生成网络,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是…