一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在得到信息之后,再重新加以修正的概率叫做后验概率.贝叶斯分类是后验概率. 贝叶斯分类算法步骤: 第一步:准备阶段 该阶段为朴素贝叶斯分类做必要的准备.主要是依据具体情况确定特征属性,并且对特征属性进行适当划分.然后就是对一部分待分类项进行人工划分,以确定训练样本. 这一阶段的输入是所有的待分类项,输出…
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况可见一斑.于是善于学习的程序员们开始了R语言的学习 之旅.对于有其他语言背景的程序员来说,学习R的语法小菜一碟,因为它的语法的确太简单了,甚至有的同学说1周就能掌握R语言,的确如 此.但是之后呢?……好像进行不下去了!死记硬背记住了两个分析模型却不明其意,输出结果如同天书不会解读,各种参数全部使用缺…
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris[,1:4], iris[,5]) #或写成下面形式,都可以. > classifier<- naiveBayes(Species ~ ., data = iris) #其中Species是类别变量 #预测 > predict(classifier, iris[1, -5]) 预测结果为:…
接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 #1.1.生成类别的概率 ##计算训练集合D中类别出现的概率,即P{c_i} ##输入:trainData 训练集,类型为数据框 ## strClassName 指明训练集中名称为 strClassName列为分类结果 ##输出:数据框,P{c_i}的集合,类别名称|概率(列名为 prob) cla…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. KNN算法步骤:需对所有样本点(已知分类+未知分类)进行归一化处理.然后,对未知分类的数据集中的每个样本点依次执行以下操作:1.计算已知类别数据集中的点与当前点(未知分类)的距离.2.按照距离递增排序3.选取与当前距离最小的k个点4.确定前k个点所在类别的出现频率5.返回前k个点出现频率最高的类别作为当前点的预测类别 编写R脚本: #!/usr/bin/Rscript #1.对i…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的时间(时)统计--要求:分析时间和点击次数的聚类情况 2.数据准备 --创建临时表 DROP TABLE if exists tmp.t2_collect; CREATE TABLE tmp.t2_collect( h int, cnt int ) COMMENT '用户点击数据临时表'; --插入…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.11 43.5 0.12 45.0 0.13 45.5 0.14 45.0 0.15 47.5 0.16 49.0 0.17 53.0 0.18 50.0 0.20 55.0 0.21 55.0 0.23 60.0 > s=read.table("test-1.txt", header…
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策树组成的随机森林,新数据的分类结果按照决策树投票多少形成的分数而定. 通俗的理解为由许多棵决策树组成的森林,而每个样本需要经过每棵树进行预测,然后根据所有决策树的预测结果最后来确定整个随机森林的预测结果.随机森林中的每一颗决策树都为二叉树,其生成遵循自顶向下的递归分裂原则,即从根节点开始依次对训练集…
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统.现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式. 人工神经网络从以下四个方面去模拟人的智能行为: 物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统.人工神经网络中也有大量…
编程教材 <R语言实战·第2版>Robert I. Kabacoff 课程教材<商务与经济统计·原书第13版> (安德森) P48.案例2-1 Pelican 商店 PS C:\Users\小能喵喵喵\Desktop\R\homework\1_Pelican> tree /f C:. │ pelican.r │ ├───.vscode │ launch.json │ └───data PelicanStores.csv 加载数据 编程教材p32 2.3.2 已知数据集为csv…