tensorflow的tile使用】的更多相关文章

当你需要按照矩阵维度复制数据时候,可以使用tensorflow的tile函数 a1 = tf.tile(a, [2, 2]) 表示把a的第一个维度复制两次,第二个维度复制2次.注意使用tf.nn.softmax(r, axis=0),表示对每一列取softmax,一定要注意维度,axis=0表示对列取softmax,不然数据会出错 def tensoflow_test(): # 一个batch有20个样本,每个样本的长度为5,每一个为200维度 lstm_outpus = tf.truncate…
扩充 TensorFlow tf.tile 对数据进行扩充操作 import tensorflow as tf temp = tf.tile([1,2,3],[2]) temp2 = tf.tile([[1,2],[3,4],[5,6]],[2,3]) with tf.Session() as sess: print(sess.run(temp)) print(sess.run(temp2)) [1 2 3 1 2 3] [[1 2 1 2 1 2] [3 4 3 4 3 4] [5 6 5 6…
[阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul product(一般矩阵乘积) 1.2 Hadamard product(哈达玛积) 1.3 tf.matmul 1.4 tf.multiply 1.5 重载 1.6 DIN使用 0x02 多维矩阵相乘 2.1 TensorFlow实现 2.2 DIN使用 0x03 tile 3.1 tile函数 3.…
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard 认识Tensorflow TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台…
一.基础函数 1.1 .tf.reduce_sum(input_tensor, axis)   Computes the sum of elements across dimensions of a tensor,沿着维度sxis计算和 x= [[, , ], [, , ]],其秩为2 //求和,在所有维度操作,也就相当于对所有元素求和 tf.reduce_sum(x) ==> //在维度0上操作,在这个例子中实际就是按列(维度0)求和 tf.reduce_sum(x, ) ==> [, ,…
github:https://github.com/zle1992/Seq2Seq-Chatbot 1. 注意在infer阶段,需要需要reuse, 2.If you are using the BeamSearchDecoder with a cell wrapped in AttentionWrapper, then you must ensure that: The encoder output has been tiled to beam_width via tf.contrib.seq…
这一节主要来介绍TesorFlow的可视化工具TensorBoard,以及TensorFlow基础类型定义.函数操作,后面又介绍到了共享变量和图操作. 一 TesnorBoard可视化操作 TensorFlow提供了可视化操作工具TensorBoard.他可以将训练过程中的各种数据展示出来,包括标量,图片,音频,计算图,数据分布,直方图和嵌入式向量.可以通过网页来观察模型的结构和训练过程中各个参数的变化.TensorBoard不会自动把代码代码出来,其实它是一个日志展示系统,需要在session…
os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placement=True) # 如果分类的GPU没有,允许tf自动分配设备 tfconfig=tf.gpu_options.allow_growth=True # Gpu 按需增加 sess=tf.Session(config=tfconfig) 定义resnet 类 class resnetv1(Network):#…
1. rnn.BasicLSTMCell(num_hidden) #  构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, self.x, tf.float32) # 执行lstm网络,获得state和outputs 参数说明:cell表示实例化的rnn网络,self.x表示输入层,tf.float32表示类型 3. tf.expand_dim(self.w, axis=0) 对数据增加一个维度 参数说明:self.w表…
[本文摘自网络,仅供学习使用] 官网上对TensorFlow的介绍是,一个使用数据流图(data flow graphs)技术来进行数值计算的开源软件库.数据流图中的节点,代表数值运算:节点节点之间的边,代表多维数据(tensors)之间的某种联系.我们可以在多种设备(含有CPU或GPU)上通过简单的API调用来使用该系统的功能. TensorFlow包含构建数据流图与计算数据流图等基本步骤,图中的节点表示数学操作,图中连结各节点的边表示多维数组,即:tensors(张量). 张量是Tensor…
张量操作 在tensorflow中,有很多操作张量的函数,有生成张量.创建随机张量.张量类型与形状变换和张量的切片与运算 生成张量 固定值张量 tf.zeros(shape, dtype=tf.float32, name=None) 创建所有元素设置为零的张量.此操作返回一个dtype具有形状shape和所有元素设置为零的类型的张量. tf.zeros_like(tensor, dtype=None, name=None) 给tensor定单张量(),此操作返回tensor与所有元素设置为零相同…
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognition made in the past few years. In this chapter we will cover: Implementing a Simpler CNN Implementing an Advanced CNN Retraining Existing CNN models Ap…
RNN的一种类型模型被称为长短期记忆网络(LSTM).我觉得这是一个有趣的名字.它听起来也意味着:短期模式长期不会被遗忘. LSTM的精确实现细节不在本文的范围之内.相信我,如果只学习LSTM模型会分散我们的注意力,因为它还没有确定的标准   所示. :导入相关库 import numpy as np import tensorflow as tf from tensorflow.contrib import rnn 所示,构造函数里面设置模型超参数,权重和成本函数. :定义一个类及其构造函数…
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Scopes and when to use them Broadcasting the good and the ugly Feeding data to TensorFlow Take advantage of the overloaded operators Understanding order…
本文转载自:https://blog.csdn.net/LoseInVain/article/details/78763303 TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations).正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加.但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular…
k-means 是聚类中比较简单的一种.用这个例子说一下感受一下 TensorFlow 的强大功能和语法. 一. TensorFlow 的安装 按照官网上的步骤一步一步来即可,我使用的是 virtualenv 这种方式. 二.代码功能 在\([0,0]\) 到 \([1,1]\) 的单位正方形中,随机生成 \(N\) 个点,然后把这 \(N\) 个点聚为 \(K\) 类. 最终结果如下,在 0.29s 内,经过 17 次迭代,找到了4个类的中心,并给出了各个点归属的类. Found in 0.2…
1.tf.convert_to_tensor:传入的list必须是一个有固定长度的list,如果为2维的list,第二维的list的长度必须是固定. 2.tf.layers.conv1d(),默认宽卷积,里面的参数filter_size,为卷积核的height,而卷积核的width为输入的width 传入的是一个[batch_size,width,height],输出的是一个[batch_size,height,filter_num] 3.tf.layers.conv2d(),里面的参数filt…
代码(操纵全局变量) xiaojie=1 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy=tf.constant(0) loop_vars=[i,yy] def _recurrence(i,yy):…
TensorFlow API 汉化 模块:tf   定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. bitwise module:操作整数二进制表示的操作. compat module:Python 2与3兼容的函数. contrib module:包含易失性或实验代码的contrib模块. datamodule:tf.data.Dataset输入管道的API. debugging module:…
fm_model是libFM生成的模型 model.ckpt是可以tensorflow serving的模型结构 亲测输出正确. 代码: import tensorflow as tf # libFM model def load_fm_model(file_name): state = '' fid = 0 max_fid = 0 w0 = 0.0 wj = {} v = {} k = 0 with open(file_name) as f: for line in f: line = lin…
本文是针对谷歌Transformer模型的解读,根据我自己的理解顺序记录的. 另外,针对Kyubyong实现的tensorflow代码进行解读,代码地址https://github.com/Kyubyong/transformer 这里不会详细描述Transformer的实现机理,如果有不了解Transformer的可以先阅读文章<Attention is all you need>,以及我列出的一些参考博客,都是不错的解读. Layer Normalization 首先是Layer Norm…
iris: # -*- coding: utf-8 -*- # K-means with TensorFlow #---------------------------------- # # This script shows how to do k-means with TensorFlow import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from sklearn import dataset…
我们看到,利用TensorFlow 和训练好的Googlenet 可以生成多尺度的pattern,那些pattern看起来比起单一通道的pattern你要更好,但是有一个问题就是多尺度的pattern里高频分量太多,显得图像的噪点很多,为了解决这个问题,可以进一步的引入一个先验平滑函数,这样每次迭代的时候可以对图像进行模糊,去除高频分量,这样一般来说需要更多的迭代次数,另一种方式就是每次迭代中增强低频分量的梯度,这种技术被称为: 拉普拉斯金字塔分解,这里我们就要用到这种技术,我们称为:Lapla…
在前面一篇博客里,我们介绍了利用TensorFlow 和训练好的 Googlenet 来生成简单的单一通道的pattern,接下来,我们要进一步生成更为有趣的一些pattern,之前的简单的pattern都是基于单一通道,单一尺度的,现在我们来试试多尺度下生成的pattern # 这部分代码和之前单一通道的一样 # boilerplate code from __future__ import print_function import os from io import BytesIO imp…
转载:https://blog.csdn.net/tsyccnh/article/details/82459859 tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制.最终的输出张量维度不变. 函数定义: tf.tile( input, multiples, name=None ) input是待扩展的张量,multiples是扩展方法. 假如input是一个3维的张量.那么mutiples就必须是一个1x3的1维张量.这…
Mask_RCNN-2.0 网页链接:https://github.com/matterport/Mask_RCNN/releases/tag/v2.0 Mask_RCNN-master(matterport / Mask_RCNN)网页链接:https://github.com/matterport/Mask_RCNN 操作步骤 本文假设运行环境满足基本需求:Python = 3.6.8, tensorflow-gpu = 1.12.0, keras = 2.0.8, matplotlib =…
[代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tensorflow-yolov3-master ├── checkpoint //保存模型的目录 ├── convert_weight.py//对权重进行转换,为了模型的预训练 ├── core//核心代码文件夹 │ ├── backbone.py │ ├── common.py │ ├── config…
模型文件 tensorflow 训练保存的模型注意包含两个部分:网络结构和参数值. .meta .meta 文件以 “protocol buffer”格式保存了整个模型的结构图,模型上定义的操作等信息. 查看 meta 文件中所有的操作信息: # ================================================================ # # 列出 meta 中所有操作 # # =======================================…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 常用的循环神经网络结构 多层循环神经网络 双向循环神经网络 递归神经网络 长期依赖问题及其优化 长期依赖问题 长期依赖问题的优化 参考文献 一.常用的循环神经网络结构 前面的内容里我们介绍了循环神经网络的基本结构,这一小节里我们介绍几种更常用的循环神经网络的结构 多层循环神经网络 多层循环神经网络是最容易想到的一种变种结构,它的结构也很简单,就是在基本的循环神经网络的基础…
TensorFlow支持广播机制(Broadcast) TensorFlow支持广播机制(Broadcast),可以广播元素间操作(elementwise operations).正常情况下,当你想要进行一些操作如加法,乘法时,你需要确保操作数的形状是相匹配的,如:你不能将一个具有形状[3, 2]的张量和一个具有[3,4]形状的张量相加.但是,这里有一个特殊情况,那就是当你的其中一个操作数是一个具有单独维度(singular dimension)的张量的时候,TF会隐式地在它的单独维度方向填满(…