0.2.2 Linear transformations. Let U be an n-dimensional vector space and let V be an m-dimensional vector space, both over the same field F; let BU be a basis of U and let BV be a basis of V. We may use the isomorphisms x → [x]BU and y → [y]BV to rep…
title: [线性代数]2-3:消元与矩阵的关系(Elimination and Matrix) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 17:55:10 keywords: Elimination Matrix Matrix Multiplication Row Exchange Augmented Matrix Abstract: 用大学的方法消元,也就是整个消元过程矩阵化,引出矩阵乘法 Keywor…
题意:给你N个数,1~N分别为num[i],  以及T个 (i,j,P) 对于每组(i,j,P),让你将  num[i] 减去 P*num[i]  再把 P*num[i] 加到 num[j] 上.T个操作同时完成. 这T个操作执行M次(M<1e5).求最后一个点的值. 题解:将N个值排成一排放到矩阵 1*n B里,我们可以构造一个 n*n 矩阵A,使得 B*A (一个 1*n 的矩阵)的第i列为操作一次后的 第i个数的值.然后就能矩阵快速幂了! 如何构造? 一列一列构造. A的第i列会从上到下依…
http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt https://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/ Maps points (x, y) in one coordinate system to points (x', y') in another coordinate system x' =…
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. 由于矩阵A和向量x的乘积的性质与线性变换的定义有着密切的联系,我们能够进一步的探索矩阵A在线性变换中扮演着怎样的角色. 有了线性变换和标准矩阵的概念,我们就有了强有力的工具用来表示实际问题中一系列诸如拉伸.伸缩的线性变换了.…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领…
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在…
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入门了. 不多,一共10次课. 链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/calendar/ SES # TOPICS KEY DATES 1 The geometry of linear e…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…
线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用.大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免…