MXNET:深度学习计算-模型参数】的更多相关文章

我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数. 之前我们一直在使用默认的初始函数,net.initialize(). from mxnet import init, nd from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() x = nd.random.unifor…
进入更深的层次:模型构造.参数访问.自定义层和使用 GPU. 模型构建 在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层.其中第一层的输出大小为 256,即隐藏层单元个数是 256:第二层的输出大小为 10,即输出层单元个数是 10. 我们之前都是用了 Sequential 类来构造模型.这里我们另外一种基于 Block 类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解 Sequential 的运行机制. 继承 Block 类来构造模型 Blo…
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增长的选项中找到想要的东西.是在许多在线平台上推动用户参与的关键组件. 随着工业数据集规模的迅速增长,利用大量训练数据的深度学习推荐模型(deep learning,DL)已经开始显示出其相对于传统方法的优势.现有的基于DL的推荐系统模型包括广度和深度模型.深度学习推荐模型(DLRM).神经协同滤波(…
MXNet深度学习库简介 摘要: MXNet是一个深度学习库, 支持C++, Python, R, Scala, Julia, Matlab以及JavaScript等语言; 支持命令和符号编程; 可以运行在CPU,GPU,集群,服务器,台式机或者移动设备上. mxnet是cxxnet的下一代, cxxnet借鉴了Caffe的思想, 但是在实现上更加干净. MXNet安装: 这里针对的是Ubuntu 12+以上的系统的安装过程, 首先安装git(如果你电脑上还没有的话): # Install gi…
mxnet的设备管理 MXNet 使用 context 来指定用来存储和计算的设备,例如可以是 CPU 或者 GPU.默认情况下,MXNet 会将数据创建在主内存,然后利用 CPU 来计算.在 MXNet 中,CPU 和 GPU 可分别由 cpu() 和 gpu() 来表示. 需要注意的是,mx.cpu()(或者在括号里填任意整数)表示所有的物理 CPU 和内存.这意味着计算上会尽量使用所有的 CPU 核. 但 mx.gpu() 只代表一块显卡和相应的显卡内存.如果有多块 GPU,我们用 mx.…
虽然 Gluon 提供了大量常用的层,但有时候我们依然希望自定义层.本节将介绍如何使用 NDArray 来自定义一个 Gluon 的层,从而以后可以被重复调用. 不含模型参数的自定义层 我们先介绍如何定义一个不含模型参数的自定义层.事实上,这和 "模型构造" 中介绍的使用 Block 构造模型类似. 通过继承 Block 自定义了一个将输入减掉均值的层:CenteredLayer 类,并将层的计算放在 forward 函数里. class CenteredLayer(nn.Block)…
原文连接:https://blog.csdn.net/qq_40027052/article/details/79015827 注:这篇文章是上面连接作者的文章.在此仅作学习记录作用. 如今深度学习发展火热,但很多优秀的文章都是基于经典文章,经典文章的一句一词都值得推敲很分析.此外,深度学习虽然一直被人诟病缺乏足够令人信服的理论,但不代表我们不能感性分析,下面我们将对2014年夺得ImageNet的定位第一和分类第二的VGG网络进行分析,在此过程中更多的是对这篇经典文章的感性分析,希望和大家共同…
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标信息 可见目标检测比图像分类算法更复杂.图像分类算法只租要判断图像中是否存在指定目标,不需要给出目标的具体位置:而目标检测算法不仅需要判断图像中是否存在指定类别的目标,还要给出目标的具体位置 因此目标检测算法实际…
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU); Caffe的优势 上手快:模型与相应优化都是以文本形式而非代码形式给出. Caffe给出了模型的定义.最优化设置以及预训练的权重,方便…
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size…