之前讲到强化学习可以用马尔科夫决策过程来描述,通常情况下,马尔科夫需要知道  {S A P R γ},γ是衰减因子,那为什么还需要蒙特卡罗呢? 首先什么是蒙特卡罗? 蒙特卡罗实际上是一座赌城的名字,蒙特卡罗方法是冯 诺依曼 用这座赌城的名字起的. 蒙特卡罗方法的主要思想是:当求解的问题是某随机事件出现的概率,或者某随机变量的期望时,可以采用多次采样,以该事件出现的频率来估计其概率,以该变量的均值来估计其期望.并以此来代替问题的解. 那么为什么要用蒙特卡罗方法? 在真实的场景中,我们经常没法确定状…
本文介绍数据库的4个基本操作:创建.读取.更新和删除(CRUD). 接下来的数据库操作演示,我们使用MongoDB自带简洁但功能强大的JavaScript shell,MongoDB shell是一个独立的DB客户端(它也是功能完备的JavaScript解释器 可以运行任何JavaScript程序),MongoDB shell的使用介绍请阅读博文<NoSQL学习之路(三):MongoDB Shell的使用>. CRUD 1.C 创建 insert函数添加一个文档到集合里面. 直接将文档作为参数…
原文地址: https://www.cnblogs.com/pinard/p/9492980.html --------------------------------------------------------------------------------------------------- 在强化学习(三)用动态规划(DP)求解中,我们讨论了用动态规划来求解强化学习预测问题和控制问题的方法.但是由于动态规划法需要在每一次回溯更新某一个状态的价值时,回溯到该状态的所有可能的后续状态.导…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化学习的标准定义: 强化学习(Reinforcement Learning,简称RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益. 从本质上看,强化学习是一个通用的问题解决框架,其核心思想是 Trial & Error. 强化学习可以用一个闭环示意图来表示: 强化学习四元素…
强化学习基础: 注: 在强化学习中  奖励函数和状态转移函数都是未知的,之所以有已知模型的强化学习解法是指使用采样估计的方式估计出奖励函数和状态转移函数,然后将强化学习问题转换为可以使用动态规划求解的已知模型问题. 强化学习问题由于采用了MDP数学形式来构建的,由此贝尔曼方程式是我们最常用的,如下: 基础知识可参考: https://www.cnblogs.com/devilmaycry812839668/p/10306175.html =============================…
在强化学习(三)用动态规划(DP)求解中,我们讨论了用动态规划来求解强化学习预测问题和控制问题的方法.但是由于动态规划法需要在每一次回溯更新某一个状态的价值时,回溯到该状态的所有可能的后续状态.导致对于复杂问题计算量很大.同时很多时候,我们连环境的状态转化模型$P$都无法知道,这时动态规划法根本没法使用.这时候我们如何求解强化学习问题呢?本文要讨论的蒙特卡罗(Monte-Calo, MC)就是一种可行的方法. 蒙特卡罗法这一篇对应Sutton书的第五章和UCL强化学习课程的第四讲部分,第五讲部分…
原文地址: https://www.cnblogs.com/pinard/p/9529828.html -------------------------------------------------------------------------------------------------- 在强化学习(四)用蒙特卡罗法(MC)求解中,我们讲到了使用蒙特卡罗法来求解强化学习问题的方法,虽然蒙特卡罗法很灵活,不需要环境的状态转化概率模型,但是它需要所有的采样序列都是经历完整的状态序列.如果…
原文地址: https://www.cnblogs.com/pinard/p/9463815.html ----------------------------------------------------------------------------------------------- 在强化学习(二)马尔科夫决策过程(MDP)中,我们讨论了用马尔科夫假设来简化强化学习模型的复杂度,这一篇我们在马尔科夫假设和贝尔曼方程的基础上讨论使用动态规划(Dynamic Programming, D…
在强化学习(四)用蒙特卡罗法(MC)求解中,我们讲到了使用蒙特卡罗法来求解强化学习问题的方法,虽然蒙特卡罗法很灵活,不需要环境的状态转化概率模型,但是它需要所有的采样序列都是经历完整的状态序列.如果我们没有完整的状态序列,那么就无法使用蒙特卡罗法求解了.本文我们就来讨论可以不使用完整状态序列求解强化学习问题的方法:时序差分(Temporal-Difference, TD). 时序差分这一篇对应Sutton书的第六章部分和UCL强化学习课程的第四讲部分,第五讲部分. 1. 时序差分TD简介 时序差…