【UOJ#308】【UNR#2】UOJ拯救计划】的更多相关文章

[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2*3\),所以我们只需要考虑其模\(2\)和模\(3\)的结果了. 而最终答案的贡献是\(\sum_{i=1}^k A_{k}^i f[i]\),当\(i\ge 3\)的时候\(6|A_k^i\),所以我们只需要知道\(f[0],f[1],f[2]\)的值. \(f[0]\)的值?当然是\(0\)啊…
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. 于是需要仔细观察数据范围. 咦模数等于666? 那么对于A(n,i)A(n,i)A(n,i)在i≥3i\geq 3i≥3的时候模666都是000了. 因此只用讨论i=1i=1i=1和i=2i=2i=2的方案数. 什么? i=1?i=1?i=1? 没错,题目上并没有说过m!=0m!=0m!=0啊. 还…
传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\)的话\(i!\)必定是\(6\)的倍数,所以后面相当于没有贡献,只需要考虑\(i=1,2\)的情况 如果\(i=1\),只有在\(m=0\)的时候可行,方案数为\(k^n\) 如果\(i=2\),先用黑白染色判断一下是否可行,这里可以用并查集.如果可行的话每个连通块有两种方案,然后再乘上选\(2\)…
传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$cnt$为固定颜色顺序的染色方案,$i!$为可以交换学校位置. 考虑当$i \geq 3$的时候,贡献含有模数因子6,所以模6为0,相当于没有贡献. 当$i = 1$,显然只有$m = 0$有贡献. 对于$m = 0$我们特判,答案显然是$K^n$. 剩下$i = 2$的情况,也就是我们要判断答案是不…
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不同,输出方案数\(\pmod 6\) 数据范围 \(1\leq n\leq 10^5,0\leq m\leq 2\times 10^5,1\leq k\leq 10^4\) 思路 水题解,他不香吗 由于本人并不会UOJ中的其他题,所以来水最简单的一道了 直接计算的话,答案为: \[\sum\limi…
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ ans(i)表示恰好用i种颜色的方案数. 发现i<=2时候才有贡献 i=1的时候,只有m=0才有贡献,否则没有 i=2的时候,判断图是否是二分图,是的话答案就是2^(联通块个数) #include<iostream> #include<cstring> #include<cs…
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的方案数 f[k]*A(n,k) 而A(n,k)=n!/(n-k)! 显然可以发现,当k>=3的时候 这个数一定是6的倍数啊 这样的话,就只需要考虑1种颜色和两种颜色的情况就可以了 一种显然只有m=0的时候才存在1种方案 而两种呢 当且仅当一个联通块是一个二分图的时候才会满足 那么答案就等于2^l 其…
分析:比较难分析的一道题,先把式子写出来,ans=∑C(k,i)*f(i),f(i)是选i个颜色的方案数.这个模数有点奇怪,比较小而且是合数,说不定就会有某种规律,如果i >= 3,可以发现C(k,i)一定是被6整除的,那么我们只需要考虑i=2和i=1的情况,i=1的情况比较好处理,这种情况下,m只有等于0,答案为k^n,然后可以发现,这不仅仅是对i=1的情况的分析,所以我们要先特判m=0. 那么i=2的情况要怎么处理呢?把每个连通块单独分析,如果一个连通块有一个合法方案,反过来又是一个合法方案…
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$条边 因而最多的生成树数量仅为$\frac{n}{2}$ 只考虑$ n$为偶数的情况(n为奇数时所有生成树中随便挑一个点往新点连边即可) 当$n=2$时生成树为(1,2) 当$ n >2$时先将$ n$和$ n-1$连边 然后将对于$ 1 \leq i <n-1$,如果$ i$是奇数就将$ (i,…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2$,每一棵树需要 $n-1$ 条边,所以答案最多是 $\lfloor \frac n 2 \rfloor$ . 然后我们来找到构造出 $\lfloor \frac n 2 \rfloor$ . 这里我们只考虑 n 为偶数,因为如果 n 为奇数的话就只要在 n-1 的基础上随便连就好了. 考虑增量法.…