spark shuffle写操作之SortShuffleWriter】的更多相关文章

提出问题 1. spark shuffle的预聚合操作是如何做的,其中底层的数据结构是什么?在数据写入到内存中有预聚合,在读溢出文件合并到最终的文件时是否也有预聚合操作? 2. shuffle数据的排序是如何做的? 分区内的数据是否是有序的?若有序,spark 内部是按照什么排序算法来排序每一个分区上的key的? 3. shuffle的溢出操作和TaskMemoryManager的关系? 4. 在数据溢出阶段,内存中数据的排序是使用算法进行排序的? 5. 在溢出文件数据合并阶段,内存中的数据的排…
前言 在前两篇文章 spark shuffle的写操作之准备工作 中引出了spark shuffle的三种实现,spark shuffle写操作三部曲之BypassMergeSortShuffleWriter 讲述了BypassMergeSortShuffleWriter 用于shuffle写操作的具体细节,实现相对比较朴素,实现比较朴素,值得参考和学习.本篇文章,主要剖析了 UnsafeShuffleWriter用作写shuffle数据的具体细节.下面先来看UnsafeShuffleWrite…
前言 再上一篇文章 spark shuffle的写操作之准备工作 中,主要介绍了 spark shuffle的准备工作,本篇文章主要介绍spark shuffle使用BypassMergeSortShuffleWriter写数据详细细节. 在本篇文章中如果有不了解的术语,也可以参照 spark shuffle的写操作之准备工作  做进一步了解. 这种shuffle写数据的方式是最简单的,spark计划在以后会移除这种shuffle机制. 先上源码,后解释: 流程如下: map数据根据分区函数写入…
提出问题 1. shuffle过程的数据是如何传输过来的,是按文件来传输,还是只传输该reduce对应在文件中的那部分数据? 2. shuffle读过程是否有溢出操作?是如何处理的? 3. shuffle读过程是否可以排序.聚合?是如何做的? ...... 概述 在 spark shuffle的写操作之准备工作 中的 ResultTask 和 ShuffleMapTask 看到了,rdd读取数据是调用了其 iterator 方法. 计算或者读取RDD org.apache.spark.rdd.R…
前言 在前三篇文章中,spark 源码分析之十九 -- DAG的生成和Stage的划分 剖析了DAG的构建和Stage的划分,spark 源码分析之二十 -- Stage的提交 剖析了TaskSet任务的提交,以及spark 源码分析之二十一 -- Task的执行细节剖析了Task执行的整个流程.在第三篇文章中侧重剖析了Task的整个执行的流程是如何的,对于Task本身是如何执行的 ResultTask 和 ShuffleMapTask两部分并没有做过多详细的剖析.本篇文章我们针对Task执行的…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
转载自:https://blog.csdn.net/raintungli/article/details/70807376 当Executor进行reduce运算的时候,生成运算结果的临时Shuffle数据,并保存在磁盘中,被最后的Action算子调用,而这个阶段就是在ShuffleMapTask里执行的. 前面博客中也提到了,用什么ShuffleWrite是由ShuffleHandler来决定的,在这篇博客里主要介绍最常见的SortShuffleWrite的核心算法ExternalSorter…
这篇文章会详细介绍,Sort Based Shuffle Write 阶段是如何进行落磁盘的 流程分析 入口处: org.apache.spark.scheduler.ShuffleMapTask.runTask runTask对应的代码为: val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any]( dep.shuffleHandle, partitionId, context) writer.…
1.Shuffle流程 spark的shuffle过程如下图所示,和mapreduce中的类似,但在spark2.0及之后的版本中只存在SortShuffleManager而将原来的HashShuffleManager废弃掉(但是shuffleWriter的子类BypassMergeSortShuffleWriter和已经被废弃掉的HashShuffleWriter类似).这样,每个mapTask在shuffle的sort阶段只会生成一个结果文件,单个文件按照partitionId分成多个reg…
  在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和reduce端的计算任务并非按照一种方式对相同的分区进行计算,例如,当需要对数据进行排序时,就需要将key相同的数据分布到同一个分区中,原分区的数据需要被打乱重组,这个按照一定的规则对数据重新分区的过程就是Shuffle(洗牌). Spark Shuffle的两阶段 对于Spark来讲,一些Transf…
在使用 Spark 进行计算时,我们经常会碰到作业 (Job) Out Of Memory(OOM) 的情况,而且很大一部分情况是发生在 Shuffle 阶段.那么在 Spark Shuffle 中具体是哪些地方会使用比较多的内存而有可能导致 OOM 呢? 为此,本文将围绕以上问题梳理 Spark 内存管理和 Shuffle 过程中与内存使用相关的知识:然后,简要分析下在 Spark Shuffle 中有可能导致 OOM 的原因. 一.Spark 内存管理和消费模型 在分析 Spark Shuf…
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.ShuffleManager Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager // Let the user specify short names for shuffle managers val shortShuffleMgrNames = Map…
shuffle...相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuffle过程进行了优化. 那么我们从RDD的iterator方法开始: 我们可以看到,它调用了cacheManager的getOrCompute方法,如果分区任务第一次执行还没有缓存,那么会调用computeOrReadCheckpoint.如果某个partition任务执行失败,可以利用DAG重新调…
有许多场景下,我们需要进行跨服务器的数据整合,比如两个表之间,通过Id进行join操作,你必须确保所有具有相同id的数据整合到相同的块文件中.那么我们先说一下mapreduce的shuffle过程. Mapreduce的shuffle的计算过程是在executor中划分mapper与reducer.Spark的Shuffling中有两个重要的压缩参数.spark.shuffle.compress true---是否将会将shuffle中outputs的过程进行压缩.将spark.io.compr…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
Apache Spark探秘:Spark Shuffle实现 http://dongxicheng.org/framework-on-yarn/apache-spark-shuffle-details/ 对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一.本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比.本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史. (1)…
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所…
Spark Shuffle 1. Shuffle相关 当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle.由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率.概念上shuffle就是一个沟通数据连接(map和reduce)的桥梁.每个ReduceTask从每个Map Task产生数的据中读取一片数据,极限情况下可能触发M*R个数据拷贝通道(M是MapTask数…
spark shuffle 分为两种 1.byPassSortShuffle 发生条件分区数<=200:无排序及聚合操作 主要是直接按照分区号写文件,有多少分区写多少文件 不做任何排序,简单直接 2.baseSortShuffle 发生条件 1.代码中指定聚合 但是没指定排序规则,会按照分区排序,并按照key的hashcode排序,在归并之时 维护两个数组 做聚合及输出 2.代码中指定聚合并指定了排序规则,会按照分区排序,并按照key的指定规则排序(这个过程跟mr的流程一样,不多做叙述) 3.代…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…
  本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢…
Shuffle简介 Shuffle描述着数据从map task输出到reduce task输入的这段过程.shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量.因为在分布式情况下,reduce task需要跨节点去拉取其它节点上的map task结果.这一过程将会产生网络资源消耗和内存,磁盘IO的消耗.通常shuffle分为两部分:Map阶段的数据准备和Reduce阶段的数据拷…
1:sparkconf.set("spark.shuffle.file.buffer","64K") --不建议使用,因为这么写相当于硬编码2:在conf/spark-default.conf ---不建议使用,相当于硬编码3:./spark-submit --conf spark.shuffle.file.buffer=64 --conf spark.reducer.maxSizeInFlight=96 --建议使用 spark.shuffle.file.buff…
什么是Shuffle: Shuffle中文翻译为“洗牌”,需要Shuffle的关键原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. Shuffle面临的问题: 1. 数据量非常大: 2 数据如何分类,及如何Partition,Hash.Sort.钨丝计划 3. 负载均衡(数据倾斜) 4. 网络传输效率,需要在压缩和解压缩做出权衡,序列化和反序列化也是需要考虑的问题. Hash Shuffle: 1. Key不能是Array 2. Hash Shuffle不需要排序,从理论上就节…
原文:http://www.cnblogs.com/arachis/p/Spark_Shuffle.html spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小.将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘. 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle…
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则"打乱"成具有一定规则的数据,以便reduce端接收处理.其在MapReduce中所处的工作阶段是map输出后到reduce接收前,具体可以分为map端和reduce端前后两个部分. 在shuffle之前,也就是在map阶段,MapReduce会对要处理的数据进行分片(split)操作,…
1.Shuffle Write 和Shuffle Read具体发生在哪里 2.哪里用到了Partitioner 3.何为mapSideCombine 4.何时进行排序 之前已经看过spark shuffle源码了,现在总结一下一些之前没有理解的小知识点,作为一个总结. 用户自定义的Partitioner存到了哪里? 假设用户在调用reduceByKey时,传递了一个自定义的Partitioner,那么,这个Partitioner会被保存到ShuffleRDD的ShuffleDependency中…
Spark Shuffle 一.HashShuffle 普通机制:产生磁盘小文件的数量为:M(map task number)*R(reduce task number) 过程: 1.map task处理完数据之后,写到buffer缓冲区,buffer的大小为32k,个数与reduce task个数一致 2. 每个buffer缓存区满32k后会溢写磁盘,每个buffer最终对应一个磁盘小文件 3.reduce task拉取数据 问题: 1.shuffle write,read 频繁 2.占用内存…
1.官网  http://spark.apache.org/docs/1.6.1/configuration.html#shuffle-behavior Spark数据进行重新分区的操作就叫做shuffle过程 2.介绍 SparkStage划分的时候,将最后一个Stage称为ResultStage(ResultTask),其它Stage叫做ShuffleMapStage(ShuffleMapTask) 3.SparkShuffle实现 基于ShuffleManager来实现,1.6.1版本中存…
转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所以掌握Spark对JVM的内存使用内幕是至关重要的.很多人对 Spark 的印象是:它是基于内存的,而且可以缓存一大堆数据…