GXOI/GZOI2019部分题解】的更多相关文章

D1T1:与或和 对每位处理,问题变成所有内部不包含0/1的矩阵的个数,单调栈维护即可. #include<cstdio> #include<algorithm> #include<cstring> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,mod=1e9+; int top,sum,sm,n,mx,a[N][N],b[N][N],st[N],sz[N],l[N][N…
GXOI/GZOI2019题解 P5300 [GXOI/GZOI2019]与或和 一眼题.. 显然枚举每个二进制位,答案就变成了全1子矩阵数量. 这个xjb推推,单调栈一下就行了. #include<bits/stdc++.h> #define il inline #define vd void #define mod 1000000007 typedef long long ll; il ll gi(){ ll x=0,f=1; char ch=getchar(); while(!isdig…
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 或和. 分析: 或和与是一个东西,只要把所有数都异或上\((1<<31)-1\)然后再从总答案中减掉就能互相转化,考虑求与. 枚举每一位,转化成算有多少个全\(1\)子矩形,单调栈经典问题.总时间复杂度\(\mathrm{O}(n^2\log n)\). 代码: #include <cst…
Problem loj3085 bzoj不放题面差评 题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上.现要求安排所有飞机在航线相交处做特技: 擦身而过:两架飞机按原方向线路继续前进,一次得分 \(b\) 对向交换:两架飞机交换线路继续前进,一次得分 \(a\) 另外,给定 \(k\) 个边界与坐标轴成 \(45°\)角 的正方形,若一次特技被至少一个正方形囊括,则总得分加 \(c\) 现要求决策每次相遇做的特技,求最大/最小…
[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设\(f[i]\)表示当前除了到第\(i\)列的方案数,转移是考虑用\(2*1\)竖着覆盖一列还是\(2\)个\(1*2\)横着覆盖两列,得到转移\(f[i]=f[i-1]+f[i-2]\). 现在回假设要在这一行放上第二个\(1*1\),那么直到前一个\(1*1\)所在列之前的所有方块都被唯一确定了…
题目地址:P5305 [GXOI/GZOI2019]旧词 这里是官方题解 \[\sum_{i \leq x}^{}\ depth(lca(i,y))^k\] \(k = 1\) 求的是 \(\sum_{i \leq x}^{}\ depth(lca(i,y))\) ,一堆点然后每个点和 \(y\) 求 \(lca\) 然后深度求和. 总体思路是把 \(lca\) 的值摊派到这个点到根的路径上(这个东西也叫树上差分?),再离线解决所有询问. 维护一个点权数组 \(sum\) ,初始为 \(0\)…
题目地址:P5304 [GXOI/GZOI2019]旅行者 这里是官方题解 一个图 \(n\) 点 \(m\) 条边,里面有 \(k\) 个特殊点,问这 \(k\) 个点之间两两最短路的最小值是多少? \(n \leq 10^5, m \leq 5 * 10 ^5\) 假设我们把特殊点分成 \(A,B\) 两个集合,新建 \(s\) 连 \(A\) 集合的所有点,边权 \(0\) ,新建 \(t\) 连接 \(B\) 集合里的所有点,边权 \(0\) ,那么 \(s\) 到 \(t\) 的最短路…
题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以下的形式,设 \(k = n - 1\) ,左右两边为整齐的道路,中间为长度 \(p(p \geq 3)\) 的组合块: 由 \(p\) 的奇偶性,可以得到两种不同的基本图形,即 \(1 \times 1\) 的小块在同一行( \(p\) 是偶数)和各占一行( \(p\) 是奇数). 数学方法 左右…
题目地址:P5302 [GXOI/GZOI2019]特技飞行 这里是官方题解(by lydrainbowcat) 题意 给 \(10^5\) 条直线,给 \(x = st\) 和 \(x = ed\) 两个位置 在两条直线 \(l1,l2\) 交点,可以交换 \(l1,l2\) 接下来的部分(变成两条折线) 交换或不交换分别可以获得固定的分数 \(a\) 和 \(b\) 另外有 \(10^5\) 个观测点可以观测到一定范围内情况(曼哈顿距离),在观测范围内的点额外计分 \(c\) 要求最后在 \…
题目地址:P5301 [GXOI/GZOI2019]宝牌一大堆 这里是官方题解(by lydrainbowcat) 部分分 直接搜索可以得到暴力分,因为所有和牌方案一共只有一千万左右,稍微优化一下数据少的测试点可以跑过 \(3\) ~ \(7\) 已经打出的,不需要考虑顺子,可以跟七对子类似直接算 正解 预处理组合数 DP 计算 \(3*4+2\) : 前 \(i\) 种牌,选了 \(j\) 组面子, \(k\) 组雀头,其中第 \(i - 2\) ~ \(i\) 种牌分别选了 \(l,m,n\…
[BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操作本质就是一样的,不妨考虑有多少个全\(1\)子矩阵. 预处理出每个元素向上能够找的最多的\(1\)的个数,对于每一行从做往右扫一遍,拿一个单调栈维护一下,这样子就可以计算出以每个元素为右下角时的贡献了. 时间复杂度\(O(n^2logV)\),在BZOJ上因为常数太大T了QwQ. #include…
[BZOJ5503][GXOI/GZOI2019]宝牌一大堆(动态规划) 题面 BZOJ 洛谷 题解 首先特殊牌型直接特判. 然后剩下的部分可以直接\(dp\),直接把所有可以存的全部带进去大力\(dp\)就行了. 发现每多一张牌胡的本质就是把一个刻字换成杠子,所以这两个东西记录在一起就行了. 那么状态就是\(f[i][0/1/2/3/4][0/1/2][0/1/2][0/1]\) 分别表示刻字.杠子.顺子的数量,\(i-1,i,i+1\)的顺子数量,\(i,i+1,i+2\)的顺子的数量,以及…
[BZOJ5506][GXOI/GZOI2019]旅行者(最短路) 题面 BZOJ 洛谷 题解 正着做一遍\(dij\)求出最短路径以及从谁转移过来的,反过来做一遍,如果两个点不由同一个点转移过来就更新答案. #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; #define ll long long #define MAX 10…
[BZOJ5507][GXOI/GZOI2019]旧词(树链剖分,线段树) 题面 BZOJ 洛谷 题解 如果\(k=1\)就是链并裸题了... 其实\(k>1\)发现还是可以用类似链并的思想,这个东西本质上就是对于当前的一个\(x\),考虑对于其他所有点的贡献,而他们的\(LCA\)一定是\(x\)到根节点链上的一个点.那么对于某个\(x\)的祖先节点,除了\(x\)所在的子树内,其他的所有子树内的点全部会产生这个点的深度的\(k\)次方的贡献.\(k=1\)的时候这个东西可以直接做的原因是因为…
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1\le N\le 10^3\),\(val_{(i,j)} \le 2^{31}-1\). 题解 一眼题. 对于这种位运算的题,题都不用看完先想拆位,拆位可行那就拆,拆位不可行就不拆. 这里指的拆位可不可行具体指的是答案满不满足对于拆位之后的可加性. 发现这个题所求的是个和,那就果断拆开. 这样的话问题就变…
题目链接: [GXOI/GZOI2019]旅行者 我们考虑每条边的贡献,对每个点求出能到达它的最近的感兴趣的城市(设为$f[i]$,最短距离设为$a[i]$)和它能到达的离它最近的感兴趣的城市(设为$g[i]$,最短距离设为$b[i]$). 那么每条边$(u,v,w)$的贡献就是$a[u]+w+b[v]$,用这个值去更新答案即可(这个值代表$f[u]$到$g[v]$的最短路长度). 但要注意一条边能更新答案需要满足$f[u]\neq g[v]$,因为要保证起点和终点不同. 手画一下就可以知道最短…
题目链接: [GXOI/GZOI2019]旧词 对于$k=1$的情况,可以参见[LNOI2014]LCA,将询问离线然后从$1$号点开始对这个点到根的路径链修改,每次询问就是对询问点到根路径链查询即可. 可以发现,如果一个点的贡献被记入答案,那么这个点到根的路径上所有点的贡献都会被记入答案. 那么对于$k>1$的情况,只要每次将路径上点$u$的权值都$+1$变成每次将路径上点$u$的权值都$+(dep[u]^k-(dep[u]-1)^k)$即可. 同样用线段树维护树剖序的区间权值和即可. #in…
题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][0]$ $f[i][1]=2*f[i-1][0]+f[i-1][1]$ $f]i][2]=f[i-1][2]+f[i-2][2]+f[i-2][1]$ 通过递推式子求出一个$6*6$的矩阵然后用矩阵乘法优化递推即可. #include<set> #include<map> #inclu…
题目链接: [GXOI/GZOI2019]宝牌一大堆 求最大值容易想到$DP$,但如果将$7$种和牌都考虑进来的话,$DP$状态不好设,我们将比较特殊的七小对和国士无双单独求,其他的进行$DP$. 观察其他五种和牌可以发现,他们都是由$4$组杠子或面子和$1$组雀头组成. 那么可以列出$DP$式子:$f[i][j][k][l][m][n]$表示前$i$种牌,其中有$j$个杠子或面子.$k$个雀头,第$i-2\sim i$种牌分别有$l,m,n$张时前$i-3$种牌的最大值. 转移时对顺子.杠子.…
题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一个 01 矩阵中全 \(0/1\) 子矩阵的个数呢? 单调栈可以 \(O(n^2)\) 实现 总时间复杂度 \(O(n^2k)\) 其中 \(k\) 是二进制位数 #include <bits/stdc++.h> #define ll long long using namespace std;…
题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多少个矩形只有$0$. 我们统计以每个$0$为矩形右下角的矩形有多少个. 对于第$i$行的每一列维护出从这一行开始往上有多少个连续的$0$. 现在问题就变成了对于第$i$行的每一列,之前有多少个格子能作为矩形的左上角和它匹配. 用单调栈维护一个单调递增的序列对每行分别统计答案即可. 对于与运算,就是将…
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代表着水平位置,纵坐标代表着飞行高度. 在最初的计划中,这 \(n\) 架飞机首先会飞行到起点 \(x = x_{st}\) 处,其中第 \(i\) 架飞机在起点处的高度为 \(y_{i,0}\).它们的目标是终点 \(x = x_{ed}\) 处,其中第 \(i\) 架飞机在终点处的高度应为 \(y…
LOJ#3088. 「GXOI / GZOI2019」旧词 不懂啊5e4感觉有点小 就是离线询问,在每个x上挂上y的询问 然后树剖,每个节点维护轻儿子中已经被加入的点的个数个数乘上\(dep[u]^{k}\) 新加一个点进去只会经过\(\log n\)条轻边只会更新\(\log n\)个节点 然后再维护一下每个子树里被加入点的个数,每次查询一段重链的链尾要加上重儿子个数减去从y来的那个轻儿子的子树个数乘上\(dep[u]^k\) #include <bits/stdc++.h> #define…
LOJ#3087. 「GXOI / GZOI2019」旅行者 正着求一遍dij,反着求一遍,然后枚举每条边,从u到v,如果到u最近的点和v能到的最近的点不同,那么可以更新答案 没了 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar('…
LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数然后乘上N就是不合法的方案 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #…
LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小值 对向交换最大化是每个点都对向交换 擦身而过最大化需要对向交换最小化,我们一次对向交换相当于交换任意两个数,所以就是每个置换圈的点数-1累加即可 #include <bits/stdc++.h> #define fi first #define se second #define pii pai…
LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置能向上延伸的高度\(h[i][j]\) 枚举左下角的端点,用一个单调栈维护即可 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_p…
开始完全没思路 在洛谷看到样例一,突发奇想,决定先做一下元素只有0/1的情况 发现子任务1是全1子矩阵 子任务2是总子矩阵个数减去全0子矩阵 发现全0/1矩阵可以构造单调栈解决.具体做法:前缀和求出每个格子上面有多少颜色为0/1的格子(是0是1有求子任务1/2决定),然后发现可以每次在单调栈中找出相邻的两个值,算出内部区块的面积,多次累加后发现刚好是全0/1子矩阵的个数 小技巧:把单调队列的第0项的坐标置0,可以避免特判 让后求总子矩阵个数也很简单,递推解决(我数学不好,瑟瑟发抖) 公式: ff…
这道题除了非常恶心以外也没有什么非常让人恶心的地方 当然一定要说有的话还是有的,就是这题和咱 ZJOI 的 mahjong 真的是好像的说~ 于是就想说这道题出题人应该被 锕 掉 noteskey 整体的思路就是特判国士无双和七对子,然后 dp 搞普通的胡牌 dp 状态设计和楼上大佬说的一样,就是用一个五维的 \(f[i][j][k][l][p]\) 表示当前处理了前 i 种类型的牌,存在 j 个 面子/杠子 ,以 i-1 开头的顺子要选 k 个,以 i 开头的面子要选 l 个,以及当前是否有…
原题传送门 首先先要学会麻将,然后会发现就是一个暴力dp,分三种情况考虑: 1.非七对子国士无双,设\(dp_{i,j,k,a,b}\)表示看到了第\(i\)种牌,一共有\(j\)个\(i-1\)开头的顺子,有\(k\)个\(i\)开头的顺子,有\(a\)个面子/杠子,有\(b\)个雀头时最大分数,暴力转移即可 2.七对子,设\(dp_{i,j}\)表示看到了第\(i\)种牌,一共有\(j\)个雀头时最大分数,暴力转移即可 3.国士无双,设\(dp_{i,j}\)表示看到了国士无双限定的第\(i…