Gated CNN 阅读笔记】的更多相关文章

之前看过TCN,稍微了解了一下语言模型,这篇论文也是对语言模型建模,但是由于对语言模型了解不深,一些常用数据处理方法,训练损失的计算包括残差都没有系统的看过,只是参考网上代码对论文做了粗浅的复现.开学以来通过看的几篇论文及复现基本掌握了tensorflow的基本使用,了解了“数据处理-模型构建-训练“的处理问题基本流程,但是随着看论文的增多发现理论基础严重薄弱,以后应该会一边补理论一边看论文... 一.论文简介 来源:没...没找到 题目:Language Modeling with Gated…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激活层 其他层 损失函数 评估标准 优化器 激活函数 正则化 约束 Keras 文档阅读笔记(不定期更新) 本文是 Keras 2.2.4 文档的阅读笔记,旨在以自顶向下的角度建立起对 Keras 主要模块的认识,同时方便记忆. 内容将不定期更新补充. 模型 Sequential 模型方法 compi…
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 基于注意力的视听融合技术实现鲁棒自动语音识别 (这是用谷歌翻译的.....)   摘要 文章介绍提出了一种音-视融合方案,这种方案超越了简单的特征融合,可以实现两种模式的自动对齐,进而实现了不论在嘈杂还是安静环境下识别精度的提高.文章在TCD-TIMIT和LRS2数据集上进行了测试,其中这两个数据…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成一个伪标签(pseudo labels),将标记的数据和部分伪标签的数据作为扩充数据集进行训练. 但这种方法引入了很多不可信的训练样本,制约了训练模型的性能. (3)Contribution: ① 为了在单样本学习中更好的利用未标签数据,提出了步进学习方法EUG(Exploit the Unknow…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先,为什么选择这本书呢,其实,最开始我选择的是<实用软件需求分析>,可是后来大概看了<火球 UML大战需求分析>这本书前序之后啊,发现了,书中的作者一开始和我们有着一样的困扰,就象我们大学刚学到UML之后,学完一考试,考试前一复习,考完之后,就随手扔到了一边去.因为对于我们没有经历过正规…
http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++   7. The efficiency of different C++ constructs 栈的速度快是因为,总是反复访问同一段地址,如果没有大的数组,肯定实在L1 cahce中. 全局静态区,global,static变量,float constants, string constants, array initializer lists,switch…