matplotlib实战】的更多相关文章

原文:https://www.cnblogs.com/ws0751/p/8361330.html https://www.cnblogs.com/ws0751/p/8313017.html---matplotlib常用操作2 https://www.cnblogs.com/ws0751/p/8312980.html---matplotlib 常用操作 https://blog.csdn.net/u014453898/article/details/73395522----python3 的 ma…
plt.imshow(face_image.mean(axis=2),cmap='gray') 图片灰度处理¶   size = (m,n,3) 图片的一般形式就是这样的 rgb 0-255 jpg图片 166,255,89 0.0-1.0 png图片 0.1,0.2,0.6 灰度处理以后 rgb---->gray 166,255,89 ---> 190 0.1,0.2,0.6 -- > 0.4 size = (m,n) import scipy.misc as misc import…
import numpy as np import matplotlib.pyplot as plt def main(): #scatter fig = plt.figure() ax = fig.add_subplot(3,3,1) n = 128 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) T = np.arctan2(Y,X) #plt.axes([0.025,0.025,0.95,0.95]) ax.scatter(X…
import numpy as np def main(): # print("hello") # line import matplotlib.pyplot as plt x = np.linspace(-np.pi, np.pi, 256, endpoint=True) # print(x) c, s = np.cos(x), np.sin(x) plt.figure(1) # 绘制第一个图 plt.plot(x, c, color="blue", linewi…
本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 数据丢失或者不完整的处理方法及编程实战 Categorical 数据的 Dummy Encoders 方法及编程实战 Fit 和 Transform 总结 数据切分之Training 和 Testing 集合实战 Feature Scaling 实战 引言 机器学习中数据预处理是一个很重要的步骤,…
问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import matplotlib*这条语句,原因是没有安装numpy和matplotlib.虽然用Anaconda的prompt以及Spyder等都可以成功运行,但如何在cmd环境下使用代码中含有numpy和matplotlib代码的文件呢? 至于如何安装,直接给答案: 用pip install numpy和pip insta…
学习完matplotlib绘图可以设置的属性,还需要学习一下除了折线图以外其他类型的图如直方图,条形图,散点图等,matplotlib还支持更多的图,具体细节可以参考官方文档:https://matplotlib.org/gallery/index.html 折线图 折线图主要是以折线的上升或者下降表示数据的增减 plt.plot() 调用多次可以在同一张图上绘制多条折线 x = range(11,31,1) a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,…
matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot from matplotlib import pyplot as plt x = range(1,13) y = [15,13,14.5,17,20,25,26,26,27,22,18,15] # 传入x和y,通过plot绘制折现 plt.plot(x,y) # 展示绘图 plt.show() 更多属…
#输出散点图 def f(): datingDataMat,datingLabels = file2matrix("datingTestSet3.txt") fig = plt.figure() # ax = fig.add_subplot(199,projection='polar') # ax = fig.add_subplot(111,projection='hammer') # ax = fig.add_subplot(111,projection='lambert') # a…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…