Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3\). 在确定了所有的 \(w_i\) 后再开始游戏:不断抽点,点 \(i\) 被抽中的概率为 \(\frac {w_i}{\sum_{j=1}^nw_j}\),直到所有点都被抽中过. 给定 \(n-1\) 个二元组 \((u,v)\) 表示第一次抽中 \(u\) 的时间需要比第一次抽中 \(v\)…