通过spark rdd 求取  特征的稀疏向量 spark 类标签的稀疏 特征向量 - bonelee - 博客园 http://www.cnblogs.com/bonelee/p/7814081.html…
不多说,直接上干货! RDD的五大特征 分区--- partitions 依赖--- dependencies() 计算函数--- computer(p,context) 分区策略(Pair RDD)-- partitioner() 本地性策略--- preferredLocations(p)…
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh 启动spark-shell s…
一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式数据集. 它定义了如何在集群的每个节点上操作数据的一系列命令,而不是指真实的数据,Spark通过RDD可以对每个节点的多个分区进行并行的数据操作. 之所以称弹性,是因为其有高容错性.默认情况下,Spark会在每一次行动操作后进行RDD重计算,如想在多个行动操作中使用RDD,可以将其缓存(以分区的方式…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
前言 在对数据进行了初步探索后,想必读者对MovieLens数据集有了感性认识.而在数据挖掘/推荐引擎运行前,往往需要对数据预处理.预处理的重要性不言而喻,甚至比数据挖掘/推荐系统本身还重要. 然而完整的数据预处理工作会涉及到:缺失值,异常值,口径统一,去重,特征提取等等等等,可以单写一本书了,本文无法一一介绍. 本文仅就特征提取这一话题进行粗略讨论并展示. 类别特征提取 在很多场景下,数据集的很多特征是类型变量,比如MovieLens里面的职业类型.这样的变量无法作为很多算法的输入,因为这类变…
1. 什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错,位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2. RDD的属性 1)  A list of partitions 一组分片(Partition),即数据集的基本组成单位.对于RD…
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以有许多分区(partitions),每个分区又拥有大量的记录(records). 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同一个stage中进行计算. partition:一个rdd会有若干个分区,分区的大小决定了对这个…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…
使用Scala编写Spark程序求基站下移动用户停留时长TopN 1. 需求:根据手机基站日志计算停留时长的TopN 我们的手机之所以能够实现移动通信,是因为在全国各地有许许多多的基站,只要手机一开机,就会和附近的基站尝试建立连接,而每一次建立连接和断开连接都会被记录到移动运营商的基站服务器的日志中. 虽然我们不知道手机用户所在的具体位置,但是根据基站的位置就可以大致判断手机用户的所处的地理范围,然后商家就可以根据用户的位置信息来做一些推荐广告. 为了便于理解,我们简单模拟了基站上的一些移动用户…
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5…
Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) 过滤, 返回一个新的RDD, 该RDD由经过func函数计算后返回值为true的输入元素组成 flatMap(func) 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) mapPartitions(func) 类似于map,但独立地在R…
RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习Spark其他组件的基础.笔者在这里从名字和几个重要的概念给大家一一解读: Resilient(弹性的) 提到大数据必提分布式,而在大规模的分布式集群中,任何一台服务器随时都有可能出现故障,如果一个task…
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. Thi…
  RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon)写入不同的介质. 而检查点不同,它是在计算完成后,重新建立一个Job来计算. 为了避免重复计算,推荐先将RDD缓存,这样就能保证检查点的操作可以快速完成. RDD的缓存能够在第一次计算完成后,将计算结果保存到内存.本地文件系统或者Tachyon(分布式内存文件系统)中.通过缓存,Spark避免了RD…
通过实验发现: foreach()遍历的顺序是乱的 但: collect()取到的结果是依照原顺序的 take()取到的结果是依照原顺序的 为什么呢???? 另外,可以发现: take()取到了指定数目的元素,就不再多取了 scala> val rdd = sc.makeRDD((0 to 9), 4) scala> rdd.collect res27: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) scala> rdd.partiti…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism res0: Int = 2 由以上可知,如果第二个参数如果不设置默认为2,默认的并行度最大不超过2.  实例1:读取本地文件创建RDD scala> val rdd1=sc.textFile("file:///usr/local/doc/name1.txt") rdd1: org.…
制作测试数据源: c1 85 c2 77 c3 88 c1 22 c1 66 c3 95 c3 54 c2 91 c2 66 c1 54 c1 65 c2 41 c4 65 spark scala实现代码: import org.apache.spark.SparkConf import org.apache.spark.sql.SparkSession object GroupTopN1 { System.setProperty("hadoop.home.dir", "D:…
存在这样一个示例的矢量文件,包含了两个重叠的面特征: 一个很常见的需求是求取这个矢量中所有面元素的并集,通过GDAL/GEOS很容易实现这个功能,具体代码如下: #include <iostream> #include <gdal/ogrsf_frmts.h> using namespace std; bool WritePolygon(string filePath, OGRPolygon *pOgrMerged) { //创建 GDALDriver* driver = GetG…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformations 两种操作之行动Actions 惰性求值 RDD持久化Persistence 理解闭包Understanding closures 共享变量Shared Variables 总结 Working with Key-Value Pairs.Shuffle operations.patition…
如题所示,SparkSQL /DataFrame /Spark RDD谁快? 按照官方宣传以及大部分人的理解,SparkSQL和DataFrame虽然基于RDD,但是由于对RDD做了优化,所以性能会优于RDD. 之前一直也是这么理解和操作的,直到最近遇到了一个场景,打破了这种不太准确的认识. 某些场景下,RDD要比DataFrame快,性能有天壤之别. 需求如下: 以下两份数据求交集,结果输出url. 数据一,json格式,地址我们用path_json表示,大小10T,每一行数据格式:{"id&…
一.Spark WordCount动手实践 我们通过Spark WordCount动手实践,编写单词计数代码:在wordcount.scala的基础上,从数据流动的视角深入分析Spark RDD的数据处理过程. 首先需要建立一个文本文件helloSpark.txt,helloSpark.txt的文本内容如下. Hello Spark Hello Scala Hello Hadoop Hello Flink Spark is Awesome 然后在Eclipse中编写wordcount.scala…
Spark JDBC系列--取数的四种方式 一.单分区模式 二.指定Long型column字段的分区模式 三.高自由度的分区模式 四.自定义option参数模式 五.JDBC To Other Databases 5.1Scala 5.2Java 5.3Python 一.二.三.四标题原文地址: 简书:wuli_小博:Spark JDBC系列–取数的四种方式 一.单分区模式 函数: def jdbc(url: String, table: String, properties: Properti…
Spark-RDD 1.概念介绍 RDD(Resilient Distributed Dataset):弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. 官方定义还是比较抽象,个人理解为:它本质就是一个类,屏蔽了底层对数据的复杂抽象和处理,为用户提供了一组方便数据转换和求值的方法. 2.RDD特点 1)不可变:弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 2)可分区:RDD在抽象上来…
1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> sc.textFile(inputfile) (2)驱动器程序中对一个集合进行并行化===>sc.parallelize(List("pandas","I like pandas")) 2.RDD操作 转化(Transformations)和行动*(Action…
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量调大.还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量. 有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition(). 这两个方法有什么区别,看看源码就知道了: def coalesce(numPartitions: Int, shuffle: Bool…
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中.   如何创建RDD? RDD可以从普通数组创建出…