resnet.caffemodel】的更多相关文章

http://blog.csdn.net/baidu_24281959/article/details/53203757…
R-FCN.SSD.YOLO2.faster-rcnn和labelImg实验笔记 转自:https://ask.julyedu.com/question/7490 R-FCNpaper:https://arxiv.org/abs/1605.06409作者代码:https://github.com/daijifeng001/R-FCN #matlab版本这里使用python版本的代码:https://github.com/Orpine/py-R-FCN 1.下载代码git clone https:…
R-FCN.SSD.YOLO2.faster-rcnn和labelImg实验笔记 转自:https://ask.julyedu.com/question/7490 R-FCN paper:https://arxiv.org/abs/1605.06409 作者代码:https://github.com/daijifeng001/R-FCN #matlab版本 这里使用python版本的代码:https://github.com/Orpine/py-R-FCN 1.下载代码 git clone ht…
caffemodel是二进制的protobuf文件,利用protobuf的python接口可以读取它,解析出需要的内容 不少算法都是用预训练模型在自己数据上微调,即加载"caffemodel"作为网络初始参数取值,然后在此基础上更新.使用方式往往是:同时给定solver的prototxt文件,以及caffemodel权值文件,然后从solver创建网络,并从caffemodel读取网络权值的初值.能否不加载solver的prototxt,只加载caffemodel并看看它里面都有什么东…
如果用公式  y=f(wx+b) 来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项.f是激活函数,有sigmoid.relu等.x就是输入的数据. 数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值. 我们运行代码: deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=root + 'mnist/lenet_iter_9380.ca…
经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的test集中随便找一张图片,用来进行实验. #coding=utf-8 import caffe import numpy as np root='/home/xxx/' #根目录 deploy=root + 'mnist/deploy.prototxt' #deploy文件 caffe_model=…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的. 开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel,  供大家下载.要进行图片的分类,这个caffemodel是最好不过的了.所…
通过前面的学习,我们已经能够正常训练各种数据了.设置好solver.prototxt后,我们可以把训练好的模型保存起来,如lenet_iter_10000.caffemodel. 训练多少次就自动保存一下,这个是通过snapshot进行设置的,保存文件的路径及文件名前缀是由snapshot_prefix来设定的.这个文件里面存放的就是各层的参数,即net.params,里面没有数据(net.blobs).顺带还生成了一个相应的solverstate文件,这个和caffemodel差不多,但它多了…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…