[SNOI2019]数论】的更多相关文章

[LOJ#3096][SNOI2019]数论 题面 LOJ 题解 考虑枚举一个\(A\),然后考虑有多少个合法的\(B\). 首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环. 所以我们预处理每个环内有多少个合法的\(b\),再把\(b\)按照访问顺序记录一下,那么对于每一个\(a\)就可以直接算答案了. #include<iostream> #include<cstdio> #include<algorithm> #include<vec…
[LG5330][SNOI2019]数论 题面 洛谷 题目大意: 给定集合\(\mathbb {A,B}\) 问有多少个小于\(T\)的非负整数\(x\)满足:\(x\)除以\(P\)的余数属于\(\mathbb A\)且\(x\)除以\(Q\)的余数属于\(\mathbb B\). 其中\(1\leq |\mathbb A|,|\mathbb B|\leq 10^6,1\leq P,Q\leq 10^6,1\leq T\leq 10^{18}\). 题面 考虑枚举一个\(A\),然后考虑有多少…
正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表示膜$Q$的余数.然后每个点$i$向$(i+P)\ mod Q$连边$QwQ$ 显然这个是会成环的,事实上这个环的长度就$\frac{P\cdot Q}{gcd(P,Q)}$(不明白的可以去康那道很古早的考过好几遍了的跑跑步那题?那题不是证了个结论是说.在膜$Q$意义下每次走$P$,只会有$gcd(…
题目 考虑对于每一个\(a_i\)计算有多少个\(0<x\leq T-1\)满足\(x\equiv a_i(mod\ P)\)且\(x\ mod\ Q \in B\) 显然\(x=a_i+k\times P\),先考虑一下这个\(k\)最大能取到多少,显然有\(a_i+k\times P\leq T-1\),所以\(k\)最大取到\(\left \lfloor \frac{T-1-a_i}{P} \right \rfloor\) 我们这样加下去,肯定会使得\(x\)在\(mod\ Q\)意义下循…
题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lfloor\frac{T-a_i}P\rfloor])\). 然后能够产生贡献的数就是\(x\%Q\in B\)的数. 而且我们知道,当\(Q|kP\)时\(x\%Q\)就会产生循环,也就是说对\(k\)而言,\(M=\frac Q{(P,Q)}\)是循环节. 所以我们可以将计算\(k\in[0,\lfloor…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\)中,因为\(a_{i} \equiv a_{i} \pmod Q\)这样避免了麻烦 然后呢我们发现每次把\((a_{i} + P) \% Q\)会走成一个圈,我们就要求从\(a_{i}\)开始数\(\lfloor \frac{T - 1- a_{i}}{P} \rfloor + 1\)个圈里\(b_{i}\)…
SNOI2019场外VP记 教练突然说要考一场别省省选来测试水平...正好还没看题那就当VP咯w... Day 1 八点开题打 .vimrc. 先看了看题目名...一股莫名鬼畜感袭来... 怎么T1就是字符串鸭?HEOI 2019 D1T2的心理阴影为啥我会xjb套那么多东西上去啊QAQ...T2数论T3通信? 不好的感觉... 读了读T1, 神仙字符串排序, 溜了溜了 读了读T2, 模两个模数同余? 溜了溜了... 读了读T3. 诶这个东西怎么这么费用流啊? 看看数据范围...诶这个 \(n\…
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据,看看有没有结论. 2 3 4 5 6 7 8 9 10 11 12 (人数) 1 2 2 3 3 3 4 4 4 4 4 (比赛数) 发现比赛数的增长成斐波那契.维护一个前缀和即可. #include <bits/stdc++.h> #define ll long long using names…
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation…