1 基于梯度的攻击——FGSM】的更多相关文章

FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境下,通过求出模型对输入的导数,然后用符号函数得到其具体的梯度方向,接着乘以一个步长,得到的“扰动”加在原来的输入  上就得到了在FGSM攻击下的样本. FGSM的攻击表达如下: 那么为什么这样做有攻击效果呢?就结果而言,攻击成功就是模型分类错误,就模型而言,就是加了扰动的样本使得模型的loss增大.…
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境下,通过求出模型对输入的导数,然后用符号函数得到其具体的梯度方向,接着乘以一个步长,得到的“扰动”加在原来的输入  上就得到了在FGSM攻击下的样本. FGSM的攻击表达如下: ε 是一个调节系数,sign() 是一个符号函数,代表的意思也很简单,就是取一个值的符号,当值大于 0 时取 1,当值等于…
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法.它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关.其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,那么迭代轮数靠前算出来的梯度对当前的梯度方向影响越…
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法.它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关.其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,迭代轮数靠前算出来的梯度对当前的梯度方向影响越小.…
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可以看作是FGSM的翻版——K-FGSM (K表示迭代的次数),大概的思路就是,FGSM是仅仅做一次迭代,走一大步,而PGD是做多次迭代,每次走一小步,每次迭代都会将扰动clip到规定范围内. 一般来说,PGD的攻击效果比FGSM要好,那么原理是什么呢?首先,如果目标模型是一个线性模型,那么用FGSM…
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可以看作是FGSM的翻版——K-FGSM (K表示迭代的次数),大概的思路就是,FGSM是仅仅做一次迭代,走一大步,而PGD是做多次迭代,每次走一小步,每次迭代都会将扰动clip到规定范围内. 一般来说,PGD的攻击效果比FGSM要好.首先,如果目标模型是一个线性模型,那么用FGSM就可以了,因为此时…
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公式表达: 下面解释下算法的大概思想,该算法将对抗样本当成一个变量,那么现在如果要使得攻击成功就要满足两个条件:(1)对抗样本和对应的干净样本应该差距越小越好:(2)对抗样本应该使得模型分类错,且错的那一类的概率越高越好. 其实上述公式的两部分loss也就是基于这两点而得到的,首先说第一部分,rn对应…
一.​我们想要求的方向场的定义为: 对于任意一点(x,y),该点的方向可以定义为其所在脊线(或谷线)位置的切线方向与水平轴之间的夹角: 将一条直线顺时针或逆时针旋转 180°,直线的方向保持不变. 因此,指纹方向场的取值范围一般定义为[0,π)或[-π/2, π/2),前闭后开区间的意义在于保证方向场取值的唯一性. 二.基于梯度场计算方向场 论文 <Analyzing Oriented Patterns> 网址:https://wenku.baidu.com/view/f741d931cc17…
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公式表达: 下面解释下算法的大概思想,该算法将对抗样本当成一个变量,那么现在如果要使得攻击成功就要满足两个条件:(1)对抗样本和对应的干净样本应该差距越小越好:(2)对抗样本应该使得模型分类错,且错的那一类的概率越高越好. 其实上述公式的两部分loss也就是基于这两点而得到的,首先说第一部分,rn对应…
写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression-tutorial-using-gradient-descent/ ---------------------------------------------------------------前言---------------------------------------------------…
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Szegedy有一个有趣的发现:有几种机器学习模型,包括最先进的神经网络,很容易遇到对抗性的例子.所谓的对抗性样例就是对数据集中的数据添加一个很小的扰动而形成的输入.在许多情况下,在训练数据的不同子集上训练不同体系结构的各种各样的模型错误地分类了相同的对抗性示例.这表明,对抗性例子暴露了我们训练算法中的基本盲点.…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com/ssharmin/spikingNN-adversarial-attack Abstract 在最近对可信任的神经网络的探索中,我们提出了一个潜在的候选,即脉冲神经网络(SNN)之于对抗攻击的内在鲁棒性.在这项工作中,我们证明对CIFAR数据集上的深度VGG和ResNet结构,在基于梯度的攻击下,…
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https://arxiv.org/pdf/1912.02184.pdf 摘要 在这篇文章中,我们提出用一个受人类感知启发的注意力模型来扩充一个现代的神经网络结构.具体地说,我们对一个神经模型进行了逆向训练和分析,该模型包含了一个受人启发的视觉注意成分,由一个自上而下的循环顺序过程引导.我们的实验评估揭示了关于这个…
目录 概 主要内容 Obfuscated Gradients BPDA 特例 一般情形 EOT Reparameterization 具体的案例 Thermometer encoding Input transformations LID Stochastic Activation Pruning Mitigating through randomization PixelDefend DenfenseGAN Athalye A, Carlini N, Wagner D, et al. Obfu…
SNN对抗攻击笔记: 1. 解决SNN对抗攻击中脉冲与梯度数据格式不兼容性以及梯度消失问题: G2S Converter.Gradient Trigger[1] 2. 基于梯度的对抗攻击方式: FGSM[1-3] R-FGSM[3] I-FGSM[3] BIM[1] PGD[2] 3. 图像转化到脉冲序列的采样方式: Poisson事件生成过程[1-9] 4. SNN类型: SNN-conv(ANN-SNN Conversion)[2-7, 9] 采用的神经元模型 IF神经元模型[2-7, 9]…
从OWASP的官网意译过来,加上自己的理解,算是比较全面的介绍.有兴趣的可私下交流. XSS 跨站脚本攻击 ==================================================================================================================================================== * 什么是XSS ** 综述 Cross-Site Scripting(XSS)是一类注入问题…
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度.理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k). 本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA.文章主要参考资料如下: [1] A Fas…
分布式拒绝服务(DDoS:Distributed Denial of Service)攻击指借助于客户/服务器技术,将多个计算机联合起来作为攻击平台,对一个或多个目标发动DDoS攻击,从而成倍地提高拒绝服务攻击的威 力.通常,攻击者使用一个偷窃帐号将DDoS主控程序安装在一个计算机上,在一个设定的时间主控程序将与大量代理程序通讯,代理程序已经被安装在网络上的许多计算机上.代理程序收到指令时就发动攻击.利用客户/服务器技术,主控程序能在几秒钟内激活成百上千次代理程序的运行. 中文名 分布式拒绝服务…
分布式拒绝服务攻击(DDoS)指的是通过多台机器向一个服务或者网站发送大量看似合法的数据包使其网络阻塞.资源耗尽从而不能为正常用户提供正常服务的攻击手段.随着互联网带宽的增加和相关工具的不断发布,这种攻击的实施难度越来越低,有大量IDC托管机房.商业站点.游戏服务商一直饱受DDoS攻击的困扰,那么如何缓解甚至解决DDoS呢?最近Rick Nelson在Nginx的官方博客上发表了一篇文章,介绍了如何通过Nginx和Nginx Plus缓和DDoS攻击. Rick Nelson首先介绍了DDoS攻…
hyddd原创,转载请说明出处. 现在网上很多关于ARP攻击的文章,但多数是描述其原理,少数会以某个工具作为例子展开说明,但感觉说的还是不够详细,今天写个文章以实战介绍一个叫"WinArpAttacker"的工具. WinArpAttacker是一个很出名的ARP攻击工具,功能也很强大,没有用过的朋友可以在上网搜一下,下载这里就不提供了.这里先简单介绍一下这工具的基本用法(如果对于ARP攻击原理不熟悉的朋友可以先看看<Arp小记>:>): 1. 首先是下载软件,然后安…
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许:对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:http://blog.csdn.net/xinzhu1990/article/details/7032301 单引号替换成两个 直接将客户端传过来的的参数值直接组成字符串sql,而不是使用s…
序 说到 XSS 攻击,前边已经有两篇文章在讲这个事了,这次又拿出来说,主要是针对近期工作中的一些新的问题.那么之前是怎么解决问题的呢?为什么又要换解决方式?以下就具体的跟大家分享一下. 旧方案 公司的測试团队发现这个问题之后,就要求尽快的解决,在网上查了非常多相关的资料,也翻阅了基本安全方面的书,基于 XSS 的攻击原理,自己写了一个 Filter,并在该 Filter 中增加了对各种请求的处理代码.首先是拦截浏览器发出的请求,然后对拦截到的请求进行过滤,获取參数列表,參数值列表(包含表单提交…
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度学习面临的一个问题就是在网络训练的过程中存在梯度消失问题(vanishing gradient problem),或者更广义地来讲就是不稳定梯度问题.那么到底什么是梯度消失呢?这个问题又是如何导致的呢?这就是本文要分享的内容. 1. 消失的梯度 首先,我们将一个网络在初始化之后在训练初期的结果可视化如下: 在…
1.简介 Session对于Web应用无疑是最重要的,也是最复杂的.对于web应用程序来说,加强安全性的第一条原则就是 – 不要信任来自客户端的数据,一定要进行数据验证以及过滤,才能在程序中使用,进而保存到数据层. 然而,为了维持来自同一个用户的不同请求之间的状态, 客户端必须要给服务器端发送一个唯一的身份标识符(Session ID). 很显然,这和前面提到的安全原则是矛盾的,但是没有办法,http协议是无状态的,为了维持状态,我们别无选择. 可以看出,web应用程序中最脆弱的环节就是sess…
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计…
一.实验说明 1. 实验介绍 通过上一节实验的SYN泛洪攻击结合Socket实现DDoS攻击. 2. 开发环境 Ubuntu Linux Python 3.x版本 3. 知识点 本次实验将涉及以下知识点: argparse 命令解析 socket的基本用法 4. 效果图 二.理论知识 1. 实现思路 由于上节实验我们已经实现了SYN泛洪攻击,而DDoS则是多台主机一起发起攻击,我们只需要能发送命令,让连接到服务器的客户端一起向同一目标发起攻击就可以了. 对安全领域比较关注的朋友可能都知道世界最大…
 One cut in grabcut(grabcut算法的非迭代实现?) 本文针对交互式图像分割中的图割算法,主要想翻译一篇英文文献.不足之处请大家指正. 这是博主近期看到的效果最好,实现最简单,运算时间最短的交互式图割算法,而且由于是发明图割算法实验室原班人马的文章和代码,所以非常值得研究. 摘要 该方法使用少量的辅助节点(这个辅助节点我没看出来代码在哪块提现的,还望高手指点)来实现高效率的分割,传统的基于梯度下降的方法的分割方法,如grabcut,可能会收敛到局部极值(在图像较大时),…
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度学习面临的一个问题就是在网络训练的过程中存在梯度消失问题(vanishing gradient problem),或者更广义地来讲就是不稳定梯度问题.那么到底什么是梯度消失呢?这个问题又是如何导致的呢?这就是本文要分享的内容. 1. 消失的梯度 首先,我们将一个网络在初始化之后在训练初期的结果可视化如下: 在…
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象是什么.识别通常只处理已经检测到对象的区域,例如,人们总是会在已有的人脸图像的区域去识别人脸. 传统的目标检测方法与识别不同于深度学习方法,后者主要利用神经网络来实现分类和回归问题.在这里我们主要介绍如何利用OpecnCV来实现传统目标检测和识别,在计算机视觉中有很多目标检测和识别的技术,这里我们主…
DDoS攻击通过大量合法的请求占用大量网络资源,以达到瘫痪网络的目的. 指借助于客户/服务器技术,将多个计算机联合起来作为攻击平台,对一个或多个目标发动DDoS攻击,从而成倍地提高拒绝服务攻击的威力.通常,攻击者使用一个偷窃帐号将DDoS主控程序安装在一个计算机上,在一个设定的时间主控程序将与大量代理程序通讯,代理程序已经被安装在网络上的许多计算机上.代理程序收到指令时就发动攻击.利用客户/服务器技术,主控程序能在几秒钟内激活成百上千次代理程序的运行. 首先从一个比方来深入理解什么是DDOS.…