CIFAR-10和CIFAR-100均是带有标签的数据集,都出自于规模更大的一个数据集,他有八千万张小图片.而本次实验采用CIFAR-10数据集,该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图.这里面有50000张用于训练,构成了5个训练批,每一批10000张图:另外10000用于测试,单独构成一批.测试批的数据里,取自10类中的每一类,每一类随机取1000张.抽剩下的就随机排列组成了训练批.注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一…
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, 2018 · Updated September 15, 2018 1.目标-TensorFlow CNN 卷积神经网络 在之前的TensorFlow教程中,我们讨论了使用TensorFlow进行手写识别.今天我们讲学习怎样使用TensorFlow创建一个卷积神经网络关于CIFAR 10的分类模型…
Python实现鸢尾花数据集分类问题——基于skearn的NaiveBayes 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaolin Shen' from sklearn.naive_bayes import GaussianNB,BernoulliNB import numpy as np import pandas as pd from sklearn import preprocessing from sk…
Python实现鸢尾花数据集分类问题——基于skearn的LogisticRegression 一. 逻辑回归 逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法. 概率p与因变量往往是非线性的,为了解决该类问题,我们引入了logit变换,使得logit(p)与自变量之  间存在线性相关的关系,逻辑回归模型定义如下: 1 #Sigmoid曲线: 2 import matplotli…
Python实现鸢尾花数据集分类问题——基于skearn的SVM 代码如下: # !/usr/bin/env python # encoding: utf-8 __author__ = 'Xiaolin Shen' from sklearn import svm import numpy as np from sklearn import model_selection import matplotlib.pyplot as plt import matplotlib as mpl from m…
Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教程就是我们这些新手的福利了. 第一步:如果前面的train_net.cpp编译通过了,那么这个就非常简单.Caffe训练和测试的数据都是需要leveldb格式的,niuzhiheng大牛已经给我们转好了MNIST的数据格式.如下图:  第二步:如上图所示,文件夹下有个get_mnist_leveld…
关于如何将数据集封装为 Bunch 可参考 关于 『AI 专属数据库的定制』的改进. PyTables 是 Python 与 HDF5 数据库/文件标准的结合.它专门为优化 I/O 操作的性能.最大限度地利用可用硬件而设计,并且它还支持压缩功能. 下面的代码均是在 Jupyter NoteBook 下完成的: import sys sys.path.append('E:/xinlib') from base.filez import DataBunch import tables as tb i…
1.jQuery百叶窗效果焦点图 多种百叶窗动画方式 对于百叶窗动画效果,我们介绍的不是很多,目前就介绍过一款CSS3百叶窗图片切换.这次要给大家带来一个基于jQuery的多种百叶窗动画效果焦点图,焦点图的切换伴随随机的百叶窗动画,每一种百叶窗动画都非常精巧,当然你也可以定义自己的百叶窗动画,将其加入动画列表中. 在线演示 源码下载 2.jQuery多层级垂直手风琴菜单 之前我们分享过一款类似的jQuery垂直手风琴菜单CSS3手风琴菜单 下拉展开带弹性动画,这次分享的这款手风琴菜单是多层级的,…
Step 1:数据加载和处理 一般使用深度学习框架会经过下面几个流程: 模型定义(包括损失函数的选择)——>数据处理和加载——>训练(可能包括训练过程可视化)——>测试 所以自己写代码的时候基本上按照这四大模块四步走就ok了. 本例步骤: A.Load and normalizing the CIFAR10 training and test datasets using torchvisionB.Define a Convolution Neural NetworkC.Define a…
1.简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据 订阅 和 消费.应该是阿里云DTS(Data Transfer Service)的开源版本. 2.提供的能力 Canal与DTS提供的功能基本相似: 1)基于Mysql的Slave协议实时dump binlog流,解析为事件发送给订阅方. 2)单Canal instance,单DTS数据订阅通道均只支持订阅一个RDS,提供给一个消费者. 3)可以使用canal-clien…
安装教程来自 http://laravelacademy.org/post/6547.html 1.系统环境windows 10 nodejs3.9.2 composer1.2.4(国内镜像) Cmder(ConEmu 161206) 2.打开终端输入 composer create-project web-feet/coastercms project1安装到当前目录下的project1文件夹中 3.安装最后出现 cURL error 77: error setting certificate…
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言   当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点.本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP长连接,然后查看NGINX和系统的资源利用率.   二 测试环境   1.服务端   硬件:双核2.3GHz,2GB…
基于TCP开发一款远程CMD程序 客户端连接服务器后,可以向服务器发送命令 服务器收到命令后执行,无论执行是否成功,无论执行几遍,都将执行结果返回给客户端 注意: 执行系统指令使用subprocess模块完成. 本题目不考虑接收时的粘包问题 # 客户端 import socket client = socket.socket() client.connect(('127.0.0.1',8889)) while True: cmd = input('请发送命令:').strip() if len(…
文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidence 2-1 BIC approximation to log marginal likelihood 2-2贝叶斯因子 3先验 3-1 确定无信息先验分布的Jeffreys原则 3-2共轭先验Conjugate Priors 4Hierarchical Bayes 5Empirical Bayes…
基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 Keras.MXNet.Tensorflow 都封装了自己的基础数据集,如 MNIST.cifar 等.如果我们要在不同平台使用这些数据集,还需要了解那些框架是如何组织这些数据集的,需要花费一些不必要的时间学习它们的 API.为此,我们为何不创建属于自己的数据集呢?下面我仅仅使用了 Numpy 来…
1.简单例子引入 2.先验概率 3.后验概率 4.最小错误率决策 5.最小风险贝叶斯决策 1. 贝叶斯公式 2简单例子 正常情况下,我们可以快速的将街上的人分成男和女两类.这里街上的人就是我们观测到的样本,将每一个人分成男.女两类就是我们做决策的过程.上面的问题就是一个分类问题. 分类可以看作是一种决策,即我们根据观测对样本做出应归属哪一类的决策. 假定我手里握着一枚硬币,让你猜是多少钱的硬币,这其实就可以看作一个分类决策的问题:你需要从各种可能的硬币中做出一个决策.硬币假设面值有1角.5角.1…
2017 年,Geoffrey Hinton 在论文<Dynamic Routing Between Capsules>中提出 CapsNet 引起了极大的关注,同时也提供了一个全新的研究的方向.今日,CapsNet 的作者 Sara Sabour.Hinton 老爷子联合牛津大学的研究者提出了胶囊网络的改进版本--堆栈式胶囊自编码器.这种胶囊自编码器可以无监督地学习图像中的特征,并在无监督分类任务取得最佳或接近最佳的表现.这也是胶囊网络第一次在无监督领域取得新的突破. 一个目标可以被看做是一…
矩池云将 keras 预训练模型保存目录为 /public/keras_pretrained_model/ 使用方法: 先执行命令,创建目录 mkdir -p ~/.keras/models/ 然后将预训练模型复制进去. 但是其中因为cifar-10的特殊之处所以只有cifar-10这个数据集需要对它进行改名才能正常使用 cp /public/keras_datasets/cifar-10-python.tar.gz ~/.keras/datasets/cifar-10-batches-py.t…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier as RFC from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd import numpy as np 2.…
一.深度学习在小数据集的表现 深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1.降低偏差,图像平移等操作 2.降低方差,dropout.随机梯度下降 先来看看深度学习在小数据集上表现的具体观点,来源于<撕起来了!谁说数据少就不能用深度学习?这锅俺不背!> 原文:https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/ 1.样本数量少于100个,最好不要使用深度学习 倘若你的样本数量少于100个,最好不要使用…
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没有定标,则原始数据中方差大的变量对主成分的贡献会很大.) 根据前面的描述,原始变量的协方差矩阵表示原始变量自身的方差(协方差矩阵的主对角线位置)和原始变量之间的相关程度(非主对角线位置).如果从这些数据中筛选主成分,则要选择方差大(主对角线值大),且与其它已选变量之间相关性最小的变量(非主对角线值很…
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主成分分析目标函数优化 3.3 基于最大可分性推导PCA 3.4 核主成分分析(KPCA) 四.主成分分析流程 4.1 输入 4.2 输出 4.3 流程 五.主成分分析优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工…
PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标是将数据投影到维度为K的子空间中,要求K<D且最大化投影数据的方差.这里的K值既可以指定,也可以利用主成分的信息来确定. PCA其实就是方差与协方差的运用. 降维的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
引自(机器学习实战) 简单概念 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们需要简单介绍几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%.其实任意的分类器都可以做为弱分类器,比如之前介绍的KNN.决策树.Naïve Bayes.logiostic回归和SVM都可以.这里我们采用的弱分类器是单层决策树,它是一个单节点的决策树.它是adaboost中最流行的弱分类器,当然并非唯一可用的弱分类器.即从特征中选择一个特征来进行分类,该…
这里整理一下实验课实现的基于单层决策树的弱分类器的AdaBoost算法. 由于是初学,实验课在找资料的时候看到别人的代码中有太多英文的缩写,不容易看懂,而且还要同时看代码实现的细节.算法的原理什么的,就体验很不好. 于是我这里代码中英文没有用缩写,也尽量把思路写清楚. 基本概念 集成学习:通过组合多个基分类器(base classifier)来完成学习任务,基分类器一般采用弱学习器. 弱学习器:只学习正确率仅仅略优于随机猜测的学习器.通过集成方法,就能组合成一个强学习器. Bagging和Boo…
第 10 章 K-Means(K-均值)聚类算法 K-Means 算法 聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.相似这一概念取决于所选择的相似度计算方法.K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值 是因为它可以发现 K 个不同的簇, 且每个簇的中心采用簇中所含值的均值计算而成.簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述.聚类与分类算法的最大区别在于, 分类的目标类别…