当我们确定学习算法的参数的时候,我们考虑的是选择参量来使训练误差最小化,有人认为得到一个非常小的训练误差一定是一件好事,但我们已经知道,仅仅是因为这个假设具有很小的训练误差,并不能说明它就一定是一个好的假设函数.而且我们也学习了过拟合假设函数的例子,所以这推广到新的训练集上是不适用的.那么,你该如何判断一个假设函数是过拟合的呢?对于这个简单的例子,我们可以对假设函数ℎ(…
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常大时,括号括起来的部分就接近于0,所以就变成了: 非常有意思的是,在最小化 1/2*∑θj^2的时候,最小间距也达到最大.原因如下: 所以: 即:如果我们要最小化1/2*∑θj^2,就要使得||θ||尽量小,而当||θ||最小时,又因为,所以p(i)最大,即间距最大. 注意:C可以看成是正则项系数λ…
13.聚类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 13.1无监督学习简介 从监督学习到无监督学习 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数: 与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的: 在这里我们有一系列点,却没有标签.因此,我们的训练集可以写成只有x(1),x(2),x(3)...一直到x(m),而没有任何标签y.因…
一.开发与评价一个异常检测系统 异常检测算法是一个非监督学习算法,意味着我们无法根据结果变量…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 1000 维的数据压缩到100 维特征,或将三维数据压缩到一二维表示.所以,如果如果把PCA任务是一个压缩算法,应该能回到这个压缩表示之前的形式,回到原有的高维数据的一种近似.下图是使用PCA将样本\(x^{(i)}映射到z^{(i)}\)上 即是否能通过某种方法将z上的点重新恢复成使用\(x_{…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landmark)如图所示为\(l^{(1)},l^{(2)},l^{(3)}\),设核函数为 高斯函数 ,其中设预测函数y=1 if \(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge0\) 在实际中需要用 很多标记点 ,那么如何选取 标记点(lan…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematics Behind Large Margin classification 向量内积 假设有两个向量\(u=\begin{bmatrix}u_1\\u_2\\ \end{bmatrix}\),向量\(v=\begin{bmatrix}v_1\\v_2\\ \end{bmatrix}\),其中向量的内积…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin Intuition 人们有时将支持向量机看作是大间距分类器.在这一部分,我将介绍其中的含义,这有助于我们直观理解 SVM 模型的假设是什么样的.以下图片展示的是SVM的代价函数: 最小化SVM代价函数的必要条件 如果你有一个正样本,y=1,则只有在z>=1时代价函数\(cost_1(z)\)才等于0.…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机. 逻辑回归公式 逻辑回归公式如下图所示, 可以看出逻辑回归公式由两个变量x和\(\theta\)构成,其中x表示输入的数据,而\(\theta\)是可学习的变量,如图中右半部分所示,其图像坐标轴横轴为x.\(h…
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metrics for Skewed Classes 偏斜类 Skewed Classes 类偏斜情况表现为训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例 示例 例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤.假设我们编写一个非学习而来的算法,在所有情…