【LOJ】#2109. 「JLOI2015」骗我呢】的更多相关文章

题解 我深思熟虑许久才算是明白个大概的计数问题吧 先是转化成一个矩形,列一条直线y = x,y = x - (m + 1)我们从(0,0)走到(n + m + 1,m + 1)就是答案 因为我们起始相当于第一行缺一个0,然后有m+1种转移的方案,每次在距左边界j的地方某个点向上走表示转移到缺j - 1,向右走一步走到了缺j,再走一步走到缺j + 1.... 我们把向上走当做-1,向右走当做+1,我们可以建立一个新的模型 就是起点为\((0,0)\)终点为\((2 * n + m + 1,m +…
「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstdio> const int mod=1e9+7; const int N=3e6+10; inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;} #define mul(a,b) (1ll*(a)*(b)%mod) int qp(int…
目录 @description@ @solution@ @accepted code@ @details@ @description@ B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 \(b, d, n\),求: \[\lfloor(\frac{b + \sqrt{d}}{2})^n\rfloor \mod 7528443412579576937 \] 原题戳我查看owo. @solution@ 这道题的思路最早可以追溯到这一道经典题目吧... 注意到数据范围满足…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘 力量帮助她们战胜地灾军团. 在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖.但在经历过那场所有史书都视为禁忌的"诸神黄昏之战"后,神杖上镶嵌的奥术宝石 已经残缺,神力也几乎消耗殆尽.精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a, b)\)(其中 \(a < b\))来表示一条端点分别为顶点 \(a, b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且…