一般这样用tf.get_variable(): v = tf.get_variable(name, shape, dtype, initializer) 下面内容来源于 http://blog.csdn.net/u012436149/article/details/53696970 当我们需要共享变量的时候,需要使用tf.get_variable() 使用tf.Variable时,如果检测到命名冲突,系统会自己处理.使用tf.get_variable()时,系统不会处理冲突,而会报错,例子: i…
https://blog.csdn.net/qq_22522663/article/details/78729029 1. tf.Variable与tf.get_variabletensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过…
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价…
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
一.函数意义: 1.tf.Variable() 变量 W = tf.Variable(<initial-value>, name=<optional-name>) 用于生成一个初始值为initial-value的变量.必须指定初始化值 x = tf.Variable() x.initializer # 初始化单个变量 x.value() # 读取op x.assign() # 写入op x.assign_add() # 更多op x.eval() # 输出变量内容 2.tf.get…
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命名冲突,系统会自己处理.使用tf.get_variable()时,系统不会处理冲突,而会报错 import tensorflow as tf w_1 = tf.Variable(3,name="w_1") w_2 = tf.Variable(1,name="w_1")…
每次调用 tf.Variable() 都会产生一个新的变量,变量名称是一个可选参数,运行命名相同,如果命名冲突会根据命名先后对名字进行处理, tf.get_variable()的变量名称是必填参数,tf.get_variable()会根据这个参数去创建或者获取变量.遇到重命名的变量创建且变量名没有设置成共享变量(所谓的共享是指在同一参数空间下的共享,参数空间名称不一样就不能共享了)时,就会报错.…
tf.Variable(<initial - value>,name=<optional - name>) 此函数用于定义图变量.生成一个初始值为initial - value的变量. tf.get_variable(name,shape,dtype,initializer,trainable) 此函数用于定义图变量.获取已经存在的变量,如果不存在,就新建一个 参数: name:名称 shape:数据形状. dtype:数据类型.常用的tf.float32,tf.float64等数…
1.tf.Variable() tf.Variable(initializer,name) 功能:tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量. 参数: initializer:初始化参数: name:可自定义的变量名称 举例: import tensorflow as tf v1=tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='v1') v2=t…