解题:BZOJ 5093 图的价值】的更多相关文章

Description 题库链接 一个带标号的图的价值定义为每个点度数的 \(k\) 次方的和.给定 \(n\) 和 \(k\) ,请计算所有 \(n\) 个点的带标号的简单无向图的价值之和.对 \(998244353\) 取模. \(1\leq n\leq 10^9,1\leq k\leq 200000\) Solution 单独考虑每个点连边情况,容易发现答案就是 \[n\cdot 2^{n-1\choose 2}\sum_{i=0}^{n-1}{n-1\choose i}i^k\] 其中…
题面 显然只需要考虑一个点(再乘n),那么枚举这个点的度数,另外的$\frac{(n-1)(n-2)}{2}$条边是随意连的,而这个点连出去的边又和其余$n-1$个点产生组合,所以答案就是 $n*\frac{(n-1)(n-2)}{2}*\sum\limits_{i=0}^{n-1}C_{n-1}^i i^k$ 运用第二类斯特林数和自然数幂的关系展开$i^k$,然后发现后面那一坨只要算到$min(n-1,k)$就可以了(再往后斯特林数就成零了) 于是问题变成了快速求一行第二类斯特林数,多项式卷积…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\limits_{d=0}^{n-1} d^{k} * 2^{C_{n-1}^{2}} * C_{n-1}^{d} \) 使用 \( n^{k} = \sum\limits_{i=0}^{k} S(k,i) * i! *C_{n}^{i} \) 得到 \( ans = n * \sum\limits_{d…
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一张图的价值为每个点度数的$ k$次方和,点有标号 $ Solution$ 显然每个节点的贡献是独立的 枚举每个节点的度数,和这个点不联通的边可连可不连 $ ans=n*2^{\frac{(n-1)(n-2)}{2}}\ \ \sum\limits_{i=0}^{n-1}i^kC_{n-1}^i$ 我…
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.   Input 第一行包含两个正整数n,…
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的度数是多少,然后试着去算该情况下的贡献,即 \(\sum_{i=0}^{n-1}\binom{n-1}{i}i^k\) 由于一共有 \(n\) 个点,而除了我们限定的边之外其余的边都是可以随便连的. 故 \(Ans=n\times 2^{\frac{(n-1)(n-2)}{2}}\times \su…
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}…
CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac{n(n-1))}{2}-(n-1)}*\sum_{i=0}^{n-1}\binom{n-1}{i}i^k\) \(n\le10^9,k\le2*10^5\) 模\(998244353\) 第二类斯特林数 赶紧去学第二类斯特林数啊 第二类斯特林数:\(S(n,m)\),表示把\(n\)个不同的的球放…
5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. Input 第一行包含两个正…
题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. 题解 因为懒得敲公式了,所以就直接粘题解了. 我们发现在这张图中每个点都是等价的,所以我们就只需要考虑一个点的贡献,最后乘上n就可以了. . 当一个点的度数为i时,我们可以从其他n-1个点中任意挑出i个点和它连边,而其余n-1个点之间可以任意连边. 然后我们发现后面那一…
[CF932E]Team Work 题意:求$\sum\limits_{i=1}^nC_n^ii^k$,答案模$10^9+7$.$n\le 10^9,k\le 5000$. [BZOJ5093]图的价值 题意:“简单无向图”是指无重边.无自环的无向图(不一定连通).一个带标号的图的价值定义为每个点度数的k次方的和.给定n和k,请计算所有n个点的带标号的简单无向图的价值之和.因为答案很大,请对998244353取模输出. $n\le 10^9,k\le 200000$ 题解:对于第二道题我们显然可…
Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. Input 第一行包含两个正整数n,k(1<=n<=10^9,1<=k<=200000). Output 输出一行一个整数,即答案对998244353取模的结果. Sample Input 6 5 Sample Outpu…
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{j=0}^{n-1}{n-1\choose j}2^{\frac{(n-1)(n-2)}{2}}j^k \] 表示分别考虑每个点的贡献,我们只需要枚举其度数即可,其余的边任意连. 然后我们将后面的\(j^k\)用第二类斯特林数展开: \[ \begin{aligned} &\sum_{i=1}^{n…
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.$n \le 10^9,k \le 200000$ 化学学考时含义推式子+手动打表找规律得到了一个$O(nlogn)$的式子开心的很我以为我要AC了回来看数据范围就升天了. 问NC大神这题用到了什么:斯特林数/伯努利数.然后就自闭了学了一天的知识点还去做了点…
题面 Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. Input 第一行包含两个正整数n,k(1<=n<=10^9,1<=k<=200000). Output 输出一行一个整数,即答案对998244353取模的结果. Sample Input 6 5 Sample Ou…
[题解]BZOJ5093图的价值(二项式+NTT) 今天才做这道题,是我太弱了 强烈吐槽c++这种垃圾语言tmd数组越界不re反倒去别的数组里搞事情我只想说QAQ 推了一张A4纸的式子 考虑每个点的度数,因为每个点虽然有标号但是是等价的,对于每个点,对于答案的贡献是\(x\),答案输出\(n\times x\)就好了,所以答案是 \[ n\sum_{i=1}^{n-1} i^{k} {n-1\choose i}2^{\frac {n(n-1)} 2-(n-1)} \] 顺次解释:度数\(^k\)…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{i=0}^{n-1}C_{n-1}^{i}*2^{C_{n-1}^{2}}*i^{k} \) (又是那个公式:\( x^{n}=\sum\limits_{k=0}^{n}C_{x}^{k}*(k!)*S(n,k) \)) \( = n*2^{C_{n-1}^{2}}\sum\limits_{i=0}…
博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum_{j=0}^kj!\binom{x}{j}\begin{Bmatrix}k\\j\end{Bmatrix}$$ $$ \begin{Bmatrix}k\\j\end{Bmatrix}=\frac{1}{j!}\sum_{i=0}^ji^k\binom{j}{i}(-1)^{j-i}$$ 以上是两个…
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的,所以\[Ans=n\cdot 2^{\frac{(n-2)(n-1)}{2}}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 考虑如何计算\(\sum_{i=0}^{n-1}C_{n-1}^ii^k\). 然后...dalao看到\(i^k\)就想起了第二类斯特林数: \(S(n,m…
题面 Bzoj Sol 一张无向无重边自环的图的边数最多为\(\frac{n(n-1)}{2}\) 考虑每个点的贡献 \[n*2^{\frac{n(n-1)}{2} - (n-1)}\sum_{i=0}^{n-1}i^kC(n-1, i)\] 很好理解 考虑后面的\(\sum_{i=0}^{n-1}i^kC(n-1, i)\) \(i^k\)这里把它用第二类斯特林数表示出来 那么就是 \[\sum_{i=0}^{n-1}\sum_{j=0}^{i}S(k, j) j!C(i, j)\] \[=\…
题目 首先考虑到这是一张有标号的图,每一个点的地位是相等的,因此我们只需要求出一个点的价值和乘上\(n\)就好了 考虑一个点有多少种情况下度数为\(i\) 显然我们可以让除了这个点的剩下的\(n-1\)个点之间的边随便连,之后这个点从\(n-1\)个点里选择\(i\)个连边就好了,于是是\(\binom{n-1}{i}\times 2^{\frac{(n-1)(n-2)}{2}}\)种情况这个点度数为\(i\) 我们现在要做的就是这个柿子了 \[n2^{\frac{(n-1)(n-2)}{2}}…
Link: BZOJ 3108 传送门 Solution: 样例教你做题系列 观察第三个输出为No的样例,发现只要存在$edge(i,k),edge(j,k)$,那么$i,j$的出边一定要全部相同 于是判断有相同出边的$i,j$是否有$edge(i,p)$但没有$edge(j,p)$即可判断是否输出No Code: #include <bits/stdc++.h> using namespace std; ; int n,m,x,y,T,e[MAXN][MAXN]; bool solve()…
两个题的传送门 对于CF这道题, 分别考虑每种可能的集合大小, 每个大小为\(k\)的集合数量有\(\binom nk\)个, 所以最后的答案就是 \[\sum_{i=0}^n\binom{n}{i}i^k\] 对于bzoj这道题, 我们分别考虑每个点的贡献, 这个点可以和其他\(n-1\)个点连任意条边, 贡献是\(\sum_{i=0}^{n-1}\binom{n-1}ii^k\) 此时其他\(n-1\)个点间的\(\frac{(n-1)(n-2)}2\)条边可连可不连, 所以有\(2^{\f…
显然每个点会提供相同的贡献.于是现在只考虑1号点的贡献.若其度数为i,则在2~n号点选i个连上,剩下的边随便连,这样可以算出答案为 这个式子可以O(n)计算.发现k比较小,于是考虑如何将这个式子化为与k有关的求和. 显然前面一部分可以直接提走.考虑后面一部分的组合意义:n-1个有标号盒子里面选i个,放进去k个球的方案数 可以对这个过程进行变换:把k个球放在n-1个有标号盒子里,有球的盒子必须选,没有的可选可不选的方案数 枚举有球的盒子有多少个,可以发现答案变成了一个与k有关的式子: S(k,i)…
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 \choose 2}}n \sum\limits_{i = 0}^{n - 1} {n - 1 \choose i} i^k\] 显然要求 \[\sum\limits_{i = 0}^{n} {n \choose i} i^k\] 然后我就不知道怎么做了.. 翻翻题解 有这样一个结论: \[n^k…
不难想到考虑每个点的贡献,ans=n*sigema(1~n)i C(n-1,i)*(2^C(n-1,2))*i^k 直接套第二类斯特林拆柿子即可.提示:sigema(1~n)i C(n,i)*C(i,j) = C(n,j)*2^(n-j) #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<c…
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\)个点,且关于某个点连边的时候剩下的边都可以随便连,所以有前面的两个常数 所以真正要计算的是\[\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 根据第二类斯特林数的性质,有\[i^k=\sum_{j=0}^iS(k,j)\times j!\times C_i^j\] 然后带入,得\[\s…
原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 \[i^k=\sum\limits_{j=0}^{i}\begin{Bmatrix} k\\ j \end{Bmatrix}j!\binom{i}{j}\] 代入可得 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}…
Description 题库链接 求 \[\sum_{i=1}^n C(n,i)\times i^k\] \(1\leq n\leq 10^9, 1\leq k\leq 5000\) Solution [BZOJ 5093]图的价值的弱化版. 看公式推导可以戳链接. Code #include <bits/stdc++.h> using namespace std; const int N = 5000+5, yzh = 1e9+7; int S[N][N], n, k, inv[N]; in…
话说这个题目应该叫做 斯特林数的逆袭 QAQ 先说一说部分分的算法 1.n<=5 直接暴力搜索就可以了 2.k=0的时候不难发现任意一张图的价值都是n,问题转化为计算有多少种图,显然是2^C(n,2) 3.k=1的时候不难发现任意一张图的价值都是其度数的和,暴力1->10的n不难发现规律QAQ 4.实际上3的算法的规律会启发我们想到这个算法,不难发现每个点的度数的贡献都是独立的 不妨每一个点度数恰好为i的方案数并且计算贡献就可以了QAQ 当前点度数为i,则显然他要向i个点连边,可连边的点一共有…