deep learning自学知识积累笔记】的更多相关文章

推荐系统的演变过程 协同过滤(英雄所见略同)思想为类似喜好的人的选择必然也类似.比如小学男生普遍喜欢打手游,中年大叔普遍喜欢射雕英雄传 随后有了SVD奇异值分解,但是SVD要求不能太稀疏,因此有了隐语意模型 隐语意模型的推荐系统 https://www.jianshu.com/p/7b6bb28c1753 核心思想是将user-item ranking矩阵通过隐含的类别向量分解为user-class, class-item矩阵的乘积. 定义损失函数,使用梯度下降法,将P,Q两个矩阵求解出来,后续…
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深度学习(deep learning)是机器学习的众多分支之一,它的模型是一长串几何函数,一个接一个地作用在数据上.这些运算被组织成模块,叫作层(layer).深度学习模型通常都是层的堆叠,或者更通俗地说,是层组成的图.这些层由权重(weight)来参数化,权重是在训练过程中需要学习的参数.模型的知识…
Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Keras 回调函数和 TensorBoard 基于浏览器的可视化工具,让你可以在训练过程中监控模型 对于多输入模型.多输出模型和类图模型,只用 Keras 中的 Sequential模型类是无法实现的.这时可以使用另一种更加通用.更加灵活的使用 Keras 的方式,就是函数式API(functional…
深度学习基础 Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据处理模块,它从输入数据中提取表示,紧接着的一个例子中,将含有两个Dense 层,它们是密集连接(也叫全连接)的神经层,最后是一个10路的softmax层,它将返回一个由 10 个概率值(总和为 1)组成的数组.每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss fun…
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 使用 LSTM 生成文本 生成序列数据 用深度学习生成序列数据的通用方法,就是使用前面的标记作为输入,训练一个网络(通常是循环神经网络或卷积神经网络)来预测序列中接下来的一个或多个标记.例如,给定输入the cat is on the ma,训练网络来预测目标 t,即下一个字符.与前面处理文本数据…
神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推力,之后你便再也无法控制其飞行轨迹或着陆点.如果想要避免不好的结果(并避免浪费纸飞机),更聪明的做法是不用纸飞机,而是用一架无人机,它可以感知其环境,将数据发回给操纵者,并且能够基于当前状态自主航行.下面要介绍的技术,可以让model.fit() 的调用从纸飞机变为智能的自主无人机,可以自我反省并动…
介绍一维卷积神经网络 卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据.这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效.对于某些序列处理问题,这种一维卷积神经网络的效果可以媲美 RNN,而且计算代价通常要小很多,并且,对于文本分类和时间序列预测等简单任务,小型的一维卷积神经网络可以替代 RNN,而且速度更快 二维卷积是从图像张量中提取二维图块并对每个图块应用相同的变换,按照同样的方法,也可以使用一维卷积,从序列中提取…
本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息.在处理两个不同的独立序列(比如两条不同的 IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输入.真正改变的是,数据点不再是在单个步骤中进行处理,相反,网络内部会对序列元素进行遍历,RNN 的特征在于其时间步函数 Keras 中的循环层 from ker…
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量.文本向量化(vectorize)是指将文本转换为数值张量的过程.它有多种实现方法 将文本分割为单词,并将每个单词转换为一个向量 将文本分割为字符,并将每个字符转换为一个向量 提取单词或字符的 n-gram,并将每个 n-gram 转换为一…
本节讲卷积神经网络的可视化 三种方法 可视化卷积神经网络的中间输出(中间激活) 有助于理解卷积神经网络连续的层如何对输入进行变换,也有助于初步了解卷积神经网络每个过滤器的含义 可视化卷积神经网络的过滤器 有助于精确理解卷积神经网络中每个过滤器容易接受的视觉模式或视觉概念 可视化图像中类激活的热力图 有助于理解图像的哪个部分被识别为属于某个类别,从而可以定位图像中的物体 可视化中间激活 是指对于给定输入,展示网络中各个卷积层和池化层输出的特征图,这让我们可以看到输入如何被分解为网络学到的不同过滤器…
本节介绍基于Keras的使用预训练模型方法 想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络.预训练网络(pretrained network)是一个保存好的网络,之前已在大型数据集(通常是大规模图像分类任务)上训练好 使用预训练网络有两种方法:特征提取(feature extraction)和微调模型(fine-tuning) 特征提取是使用之前网络学到的表示来从新样本中提取出有趣的特征.然后将这些特征输入一个新的分类器,从头开始训练 ,简言之就是用提取的特征取代原…
本节介绍基于Keras的CNN 卷积神经网络接收形状为 (image_height, image_width, image_channels)的输入张量(不包括批量维度),宽度和高度两个维度的尺寸通常会随着网络加深而变小.通道数量由传入 Conv2D 层的第一个参数所控制 用卷积神经网络对 MNIST 数字进行分类Demo from keras import layers from keras import models from keras.datasets import mnist from…
Stanford大学在2015年开设了一门Deep Learning for Natural Language Processing的课程,广受好评.并在2016年春季再次开课.我将开始这门课程的学习,并做好每节课的课程笔记放在博客上.争取做到每周一更吧. 本文是第一篇. NLP简介 NLP,全名Natural Language Processing(自然语言处理),是一门集计算机科学,人工智能,语言学三者于一身的交叉性学科.她的终极研究目标是让计算机能够处理甚至是"理解"人类的自然语…
本节课将开始学习Deep NLP的基础--词向量模型. 背景 word vector是一种在计算机中表达word meaning的方式.在Webster词典中,关于meaning有三种定义: the idea that is represented by a word, phrase, etc. the idea that a person wants to express by using words, signs, etc. the idea that is expressed in a w…
1.结构图 Introduction Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian detection. Existing methods learn or design these components either individually or sequentially. The inte…
数据工作者工作时间划分 据crowdflower数据科学研究报告,数据科学工作者的时间分配主要在以下几个领域: 首先是数据收集要占20%左右的时间和精力,接着就是数据清洗和再组织需要占用60%的时间.也就是说数据科学家80%的精力都花在了数据收集和预处理,从而生成能够用于训练模型的训练集.真正的算法优化和训练只占4%左右,另外10%左右用于特征提取,数据再造. 正确的特征集及足够的数据量决定了机器学习效果的上限,算法的优化可以无限逼近这个上限 机器学习的一般流程 获取kaggle titanic…
I. Linear Algebra 1. 基础概念回顾 scalar: 标量 vector: 矢量,an array of numbers. matrix: 矩阵, 2-D array of numbers. tensor: 张量, 更高维的一组数据集合. identity Matricx:单位矩阵 inverse Matrix:逆矩阵,也称非奇异函数.当矩阵A的行列式\(|A|≠0\)时,则存在\(A^{-1}\). 2. Span 3. Norm \(L^p\) norm 定义如右: \(|…
本节课继续讲授word2vec模型的算法细节,并介绍了一种新的基于共现矩阵的词向量模型--GloVe模型.最后,本节课重点介绍了word2vec模型评估的两种方式. Skip-gram模型 上节课,我们介绍了一个十分简单的word2vec模型.模型的目标是预测word \(o\)出现在另一个word \(c\)的上下文语境里的条件概率: \[p(o|c) = \frac{exp(u_o^Tv_c)}{\sum_{w=1}^W{exp(u_w^Tv_c)}}\] 其中,向量\(u_o\)被称为wo…
文章目录 源代码github地址 摘要 2CLSTM 过程 1. 词嵌入 2. 2LSTM处理 3. CNN学习LSGCNN学习LSG 4. Softmax分类 源代码github地址 https://github.com/sunxiangguo/2CLSTM 但是没有开放数据集, 所以需要自己填数据集 摘要 这篇文章说他们认为文本的结构也是一个包含人物性格的重要特征,所以他们使用了一个名叫2CLSTM的模型,由一个双向的LSTM(Long Short Term Memory networks)…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 6: Brief Introduction of Deep Learning 本节课主要围绕Deep Learing三步骤: (1)function set (2)goodness of function (…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正. 二.<一天搞懂深度学习> 300多页的PPT,台大教授写的好文章. 对应的视频地址 1.Lecture I: Introduction of Deep Learning (1)machine learning≈找函数 training和testing过程 (2)单个神经网…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得懂# UFDL链接 : http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 自编码器( Autoencoders ):(概述) 自编码器是只有一层隐藏节点,输入和输出具有相同节点数的神经网络. 自编码器的目的是求的函数 . 也…