原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 带到原式里得到: \(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 利用\…
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}(gcd(i,j)==1)$ 证明……我不会证qwq,可以看这个链接 所以原式$\sum\limits_{i=1}{n}\sum\limits_{j=1}{m}d(ij)$ =$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{k=1}^{i…
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\) 其中\(d(x)\)是\(x\)的约数个数 题解 orz ZSY 巨佬 根据玄学(我也不知道为什么)的公式 \[d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 所以,所求等于 \[\sum_{i=1}^n\sum_{j=1}^m\sum_{u|i}\sum_{v|j}[…
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 基本同BZOJ4176…
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式 T行,每行一个整数,表示你所求的答案. 输入样例 2 7 4 5 6 输出样例 110 121 提示 1<=N, M<=50000 1<=T<=50000 题解 好神的题[是我太弱吧] 首先上来就伤结论.. 题目所求 \[ans…
正解:莫比乌斯反演 解题报告: 传送门! 先考虑证明一个结论,$d_{i\cdot j}=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]$ 看起来就很对的样子,但还是证下趴$QwQ$ 考虑分解质因数,设$i=p_{1}^{a_{1}}\cdot p_{2}^{a_{2}}\cdot p_{3}^{a_{3}},j=p_{1}^{b_{1}}\cdot p_{2}^{b_{2}}\cdot p_{3}^{b_{3}}$,则$i\cdot j=p_{1}^{a_{1}+b_{1}…
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstring> #define re register using namespace std; template<typename T>T max(T &a,T &b){return a>b?a:b;} template<typename T>T min(T &a…
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数\(T\),表示测试数据的组数.接下来的\(T\)行,每行两个整数\(N,M\). 输出格式: \(T\)行,每行一个整数,表示你所求的答案. 说明 \(1 \le N, M \le 50000\) \(1 \le T \le 50…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 思路:关键在于要知道X*Y的因子,为X的因子i和Y因子j的且满足i和j互质的个数. 然后…
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先我们要先了解\(d(i·j)\)这个函数的性质: \[d(i,j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 证明: 我也不知道,应该就是枚举\(i\)和\(j\)的约数,求出其中不互质的约数对个数,避免重复计算. 一些定义 按照莫比乌斯反演的常见套路,我们可以定义\(…
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界. 设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1). 对于f(n,m)的求解: $f(n,m)=\sum_{i=1}^{n}\…
3994: [SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Source Round 1 感谢yts19…
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_{y|j} [gcd(x,y)=1]\] 可以这么考虑:利用唯一分解定理把\(i,j\)分解,即: $i=\prod_{k = 1}^{m} p_k^{c_k},j=\prod_{k=1}^m p_k^{d_k} $ 那等式左边显然为\(\prod(c_k+d_k+1)\), 然后考虑等式右边在干什…
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Queries 然后只要在这上面加个容斥就好了,答案就是$ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)$ //minamoto #include<iostream> #include<cstdio> #define ll long long using…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫比乌斯反演.可以写成: $ \prod_{i=1}^{min(n,m)}Fib(i)^{\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor} $. 更进一步的,我们可以发现幂是一个求和,那么把求…
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$gcd(i,j)=d$的$(i,j)$的对数,$g(d)$表示存在公因数为$d$的$(i,j)$的对数 那么就有$$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]$$ $$g(d)=\sum_{d|k}f(k)=\lfloor\frac{N}{d}\rfloor\l…
正解:莫比乌斯反演 解题报告: 传送门! 首先看到这个显然就想到莫比乌斯反演$QwQ$? 就先瞎搞下呗$QwQ$ $gcd(x,y)=k$,即$gcd(\left \lfloor \frac{x}{k} \right \rfloor,\left \lfloor \frac{y}{k} \right \rfloor)=1$ 然后这个,虽然以前推过几次辣,,,但还是重新推下,,,太久没碰这些东西辣/$kel\ kel\ kel$ 设$F[k]$表示$gcd(x,y)$为$k$的倍数的数量,显然有$F…
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$$ $$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 考虑一下$gcd(x,y)=1$,我们可以考虑莫比乌斯函数的性质,那么即$\su…
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数 输入 一行两个整数\(p,n\) 输出 一行一个整数,为题目中所求值 样例 样例输入 998244353 2000 样例输出 883968974 数据范围 \(n\leq 10^{10}\) \(5\times 10^8 \leq…
传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include<cstring> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) <<],*p1=buf,*p2=bu…
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.org/blog/cjyyb/solution-p3768 //minamoto #include<iostream> #include<cstdio> #include<map> #define ll long long using namespace std; ; map&…
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{ij}{gcd(i,j)}\) 枚举g: \(S(n,m)=\sum\limits_{g=1}^{n}\frac{1}{g}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}ij[gcd(i,j)==g]\) 除以…
题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$ =$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}ijd[gcd(i,j)==d]$ =$\sum_{d=1}^{n}d^3\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)-n*m$ 令Ans=$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)$ =$\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ =$\sum_{d=1}^{n}d\sum_{i=1}^{\lf…
题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式: T行,每行一个整数,表示你所求的答案. 输入输出样例 输入样例#1: 复制 2 7 4 5 6 输出样例#1: 复制 110 121 说明 1<=N, M<=50000 1<=T<=50000 有一个…
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \(n,m \leq 5 \times 10^4\). 抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明. 知道这个定理之后,就可以按照套路开始推式子了: \[\begin{aligned}&an…