Re.多项式除法/取模】的更多相关文章

前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于G,系数对998244353取模. 多项式除法/取模主要思路 先考虑一个多项式的反转操作 就是一个多项式系数前后调换 定义这个反转的操作下标加个 R 显然FR(x)=xnF(1/x) 接着推式子 F(x)=Q(x)∗G(x)+R(x) F(1/x)=Q(1/x)∗G(1/x)+R(1/x) xnF(…
题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7       (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][j] = c[i-1][j] + c[i-1][j-1]直接得到. 但是m,n都很大时,就会超时. 利用公式:C(n,r) = n! / r! *(n-r)!  与  a/b = x(mod M)  ->  a * (b ^ (M-2)) =x (mod M)     进行求解 费马小定理:对于素数 M…
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/details/52577212 [分析]一开始想简单了,对于a^x mod p这种形式的直接用欧拉定理的数论定理降幂了 结果可想而知,肯定错,因为题目并没有保证gcd(x,s+1)=1,而欧拉定理的数论定理是明确规定的 所以得另谋出路 那么网上提供了一种指数循环节降幂的方法 具体证明可以自行从网上找一找 有…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m; 我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!,…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m; 我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!,…
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马小定理知道p为素数时,a^p-1=1modp可以写成a*a^p-2=1modp 所以a的逆元就是a^p-2, 可以求组合数C(n,m)%p中除法取模,将其转化为乘法取模 即    n!/(m!*(n-m)!)=n!*(m!*(n-m)!)^p-2 求C(n+m,m). n,m<=1000,二维数组递…
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https://www.cnblogs.com/liubilan/p/9450568.html 除法取模:(a/b)%mod = (a%(b*mod))/b 当a/b比mod小,而a又比mod大的时候a先取余再除以b就会产生错误:为了避免这个错误,只需将模数乘以b即可: 这个题目其实就是找规律,n 有1e9大,不…
题意 用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案. 思路 经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已: 本题模型共有4大类置换,共24种: 1. 不做任何旋转 K ^ (54 + 12 + 8) 2. 绕相对面中心的轴转 1) 90度 K ^ (15 + 3 + 2) * 3 1) 180度 K ^ (28 + 6 + 4) * 3 1) 270度 K ^ (15 + 3 + 2) * 3 3. 绕相对棱…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p - 1) % p = 1; -> a ^ (p - 2) % p = (1 / a) % p; 巧妙1: for(int i=1;i<=n;i++) { int temp; scanf("%d",&temp); sum1[temp]++; } for(int j=i;…
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 For non-negative integers m and n and a prime p, the following congruence relation holds: where and are the base p expansions of m and n respectively.…
传送门 对分母求一下逆元,把除法取模变成乘法取模,逆元介绍看这里 这种方法只适合模为质数的情况 #include<bits/stdc++.h> using namespace std; ; long long quickpow(long long a, long long b) { ) ; ; a %= mod; while(b) { ) ret = (ret * a) % mod; b >>= ; a = (a * a) % mod; } return ret; } long l…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5475 题目大意: 给X赋初值1,然后给Q个操作,每个操作对应一个整数M: 如果操作是1则将X乘以对应的M, 如果是2则除以第M次操作对应的M',求每次操作后X的值对给定值取摸的结果. 解题思路: 第一眼看这道题,以为就是水题,直接模拟暴力呀,但是发现这样是错误的,因为这里有除法,对除法取模,就应该是逆元,但是逆元不一定存在 想了之后发现可以用线段树保存每一个要乘以的数字,对于操作一就加入数字即可,…
组合数的性质: C(n,m)=C(n,n-m); C(n,m)=n!/(m!(n-m)!); 组合数的递推公式: C(n,m)=  C(n-1,m-1)+C(n-1,m); 组合数一般数值较大,题目会要求取模;而求组合数的过程中一般会用到除法,所以会涉及除法取模的知识; 在除法取模的过程中,一般会求一个乘法逆元; 乘法逆元的定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元; 求乘法逆元的方法: (b/a)modp;(a|b)p为质数; 1.欧拉定理或者费马小定理: 费马小定理是欧…
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里面的思路来分析的,并添加了一些自己的理解) 多项式求逆(元) 定义 对于一个多项式\(A(x)\),如果存在一个多项式\(B(x)\),满足\(B(x)\)的次数小于等于\(A(x)\)且\(A(x)B(x)\equiv 1(mod\ x^n)\),那么我们称\(B(x)\)为\(A(x)\)在模\…
原帖:http://blog.csdn.net/sonydvd123/article/details/8245057 一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: 1 -1 3 3 -1 -3 1073741822 如过你全部答对,你可以无视后面的内容…… 二.除法的取整分类 除法的取整分为三类:向上取整.向下取整.向零取整. 1.向上取整:向…
题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格的下边界 问你最大的合法子矩形大小为\(k\)的概率是多少. \(n\leq {10}^9,k\leq 1000\) 吉老师:这题本来是\(k\leq 20000\) 题解 一道好题. 我们计算最大子矩形不超过\(i\)的答案\(s_i\),那么答案就是\(s_k-s_{k-1}\). 显然最后一行…
一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: 1 -1 3 3 -1 -3 1073741822 如过你全部答对,你可以无视后面的内容…… 二.除法的取整分类 除法的取整分为三类:向上取整.向下取整.向零取整. 1.向上取整:向+∞方向取最接近精确值的整数.在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2 2.向…
问题描述:求商,不能用乘法,除法,取模运算. 算法思路:不能用除法,那只能用减法,但是用减法,超时.可以用位移运算,每次除数左移,相当于2倍. public class DividTwoIntegers { public int divide(int dividend, int divisor) { if(divisor == 0) return Integer.MAX_VALUE; if(divisor == -1 && dividend == Integer.MIN_VALUE) re…
题目分析: 用数论分块的思想,就会发现其实就是连续一段的长度$i$的高度不能超过$\lfloor \frac{k}{i} \rfloor$,然后我们会发现最长的非$0$一段不会超过$k$,所以我们可以弄一个长度为$i$的非$0$段的个数称为"元",然后用"元"去递推. 这个"元"的求法用DP:令数论分块之后第$i$段的长度为$g[i]$ $$f[i][j] = f[i-1][j] + f[i-1][k]*f[i][j-k-1]*g[i]$$ $$…
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采用二进制状压是不明智的 2的个数最多为13个 2^13也同样到达了1e4的复杂度. 考虑 hash状压 即 2的个数有x个 那么我们就有状态w表示2还有x个. 这样做的原因是把一些相同的东西给合并起来 而并非分散开来.即有多个2直接记录有多少个即可. 可以发现 这样做不同的除数最多只有5个 状态量较…
题解 前置技能 1.多项式求逆 求\(f(x)\*g(x) \equiv 1 \pmod {x^{t}}\) 我们在t == 1时,有\(f[0] = frac{1}{g[0]}\) 之后呢,我们倍增一下,假如新的答案是\(g'(x)\)在\(\pmod {x^{2t}}\)意义下,显然有 \(g'(x) - g(x) \equiv 0 \pmod {x^{t}}\) 我们两边平方一下 \(g'^{2}(x) - 2g'(x)g(x) + g^{2}(x) \equiv 0 \pmod {x^{…
E - Qwerty78 Trip Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice Gym 100947E Description standard input/output Announcement   Statements Qwerty78 is a well known programmer (He is a member of the I…
js 除法 取整 1.丢弃小数部分,保留整数部分 js:parseInt(7/2) 2.向上取整,有小数就整数部分加1 js: Math.ceil(7/2) 3,四舍五入. js: Math.round(7/2) 4,向下取整 js: Math.floor(7/2) 都是JS内置对象 javascript除法如何取整 Math.round(x) 四舍五入,如Math.round(0.60),结果为1:Math.round(0.49),结果为0: Math.floor(x) 向下舍入,如Math.…
从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其中经过(x,y)的方案数,也就是(1,1)到(x,y)的方案乘上(x,y)到(n,m)的方案,为 C((x−1)+(y−1),x−1)×C((n−x)+(m−y),n−x) 于是答案就是下式取模 C(m+n−2,n−1)−C(x+y−2,x−1)×C(n−x+m−y,n−x) m和n大到10的五次方…
http://acm.hit.edu.cn/hoj/problem/view?id=3152 Dice My Tags (Edit) Source : Time limit : sec Memory limit : M Submitted : , Accepted : You have a dice with M faces, each face contains a distinct number. Your task is to calculate the expected number o…
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展gcd, 不是用逆元吗.. 网上还有别人的解释,没看懂,贴一下: (a / b) % m = ( a % (m*b)) / b 笔者注:鉴于ACM题目特别喜欢M=1000000007,为质数: 当gcd(b,m) = 1, 有性质: (a/b)%m = (a*b^-1)%m, 其中b^-1是b模m的逆…
1086: 大数取模   题目描述 现给你两个正整数A和B,请你计算A mod B.为了使问题简单,保证B小于100000. 输入 输入包含多组测试数据.每行输入包含两个正整数A和B.A的长度不超过1000,并且0<B<100000. 输出 对于每一个测试样例,输出A mod B. 样例输入 2 3 12 7 152455856554521 3250 样例输出 2 5 1521 [概念] (a+b)%n =(a%n+b%n)%n (a-b)%n = (a%n-b%n)%n 实话说刚开始我没看懂…
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/article/details/9247759 才想起等比数列的快速幂取模.... 求等比为k的等比数列之和T[n]..当n为偶数..T[n] = T[n/2] + pow(k,n/2) * T[n/2] n为奇数...T[n] = T[n/2] + pow(k,n/2) * T[n/2] + 等比数列第…