题目链接:https://vjudge.net/contest/28079#problem/U 题目大意:给你n(n<12)行,每行有pi,ri,求一个数ans满足ans%pi=ri(i从1~n). 解题思路:就是解同余方程组:比如第一组样例: 3 5 4 7 6 11 3 就是要我们求一个x满足下列同余方程组: x≡4(mod5) x≡6(mod7) x≡11(mod3) 然后自己看这里吧写了解释http://www.cnblogs.com/fu3638/p/7453419.html,是CRT…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 In 'MonkeyLand', there is a traditional game called "Bamboo Climbing". The rules of the game are as follows: ) There are N monkeys who play this game and there are N bamboos of equal he…
中国剩余定理 CRT 正常版本CRT 要解的是一个很容易的东西 \[ \begin{aligned} x\equiv a_1(mod\ m_1)\\ x\equiv a_2(mod\ m_2)\\ ...\\ x\equiv a_n(mod\ m_n) \end{aligned} \] 保证\(m_1,m_2...m_n\)之间两两互质,求最小的\(x\). 设\(M=\prod m_i\). 首先我们确定一点,我们求出了任意一个满足条件的\(x\)之后,只需要对其模\(M\)就是最终的答案.…
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前置知识点:\(Exgcd\) 这两个东西都是用来解同余方程组的 形如 \[ \left\{ \begin{aligned} x\equiv B_1(mod\ W_1)\\ x\equiv B_2(mod\ W_2)\\ \cdots\\ x\equiv B_n(mod\ W_n)\\ \end{aligne…
问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第二十六题,叫做"物不知数"问题,原文如下:   有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数.<孙子算经>中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称…
1319 - Monkey Tradition   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB In 'MonkeyLand', there is a traditional game called "Bamboo Climbing". The rules of the game are as follows: 1)       There are N monkeys who pl…
本题亦是非常裸的CRT. CRT的余数方程 那么定义 则 其中 为模mi的逆元. /** @Date : 2016-10-23-15.11 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/Lweleth * @Version : $ */ #include <stdio.h> #include <iostream> #include <string.h> #include &…
题目大意: 给你一菱形的数字阵,问从最上面走到最下面所能获得的最大值是多少? #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #include<queue> #include<vector> #include<map> using namespace std; typedef lo…
extend_gcd: 已知 a,b (a>=0,b>=0) 求一组解 (x,y) 使得 (x,y)满足 gcd(a,b) = ax+by 以下代码中d = gcd(a,b).顺便求出gcd 能够扩展成求等式 ax+by = c,但c必须是d的倍数才有解,即 (c%gcd(a,b))==0 注意求出的 x,y 可能为0或负数 =================================== 乘法逆元: a*b %n == 1 已知 a, n, 求b 就是乘法逆元 ============…
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv a_2 \pmod{m_2} \\ &... \\ x &\equiv a_n \pmod{m_n} \end{aligned} \right. \] \(m_1, m_2 , ... , m_n\)两两互质 令\(M = \prod_{i=1}^{n} m_i\),求\(x \mod M\)…