什么是梯度爆炸/梯度消失? 深度神经网络训练的时候,采用的是反向传播方式,该方式使用链式求导,计算每层梯度的时候会涉及一些连乘操作,因此如果网络过深. 那么如果连乘的因子大部分小于1,最后乘积的结果可能趋于0,也就是梯度消失,后面的网络层的参数不发生变化. 那么如果连乘的因子大部分大于1,最后乘积可能趋于无穷,这就是梯度爆炸 如何防止梯度消失? sigmoid容易发生,更换激活函数为 ReLU即可. 权重初始化用高斯初始化 如何防止梯度爆炸? 1 设置梯度剪切阈值,如果超过了该阈值,直接将梯度置…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案.本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案.有基础的同鞋可以跳着阅读. 其中,梯度消失爆炸的解决方案主要包括以下几个部分. - 预训练加微调 - 梯度剪切.权重正则(针对梯度爆炸) - 使…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为\(L\)的多层感知机的第\(l\)层\(\boldsymbol{H}^{(l)}\)的权重参数为\(\boldsymbol{W}^{(l)}\),输出层\(\boldsymbol{H}^{(L)}\)的权重参…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为LLL的多层感知机的第lll层H(l)\boldsymbol{H}^{(l)}H(l)的权重参数为W(l)\boldsymbol{W}^{(l)}W(l),输出层H(L)\boldsymbol{H}^{(L)}…
houseprices数据下载: 链接:https://pan.baidu.com/s/1-szkkAALzzJJmCLlJ1aXGQ 提取码:9n9k 梯度消失.梯度爆炸以及Kaggle房价预测 代码地址:下载 https://download.csdn.net/download/xiuyu1860/12156343 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion).…
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…
(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸. 原因:前面层上的梯度是来自于后面层上梯度的乘乘积.当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸. (2)梯度消失(vanishing gradient problem): 原因:例如三个隐层.单神经元网络: 则可以得到: 然而,sigmoid方程的导数曲线为: 可以看到,sigmoid导数的最大值为1/4,通常abs(w)<1,则: 前面的层比后面的层梯度变…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=109) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   如果有计算机背景的相关童鞋,都应该知道数值计算中的上溢和下溢的问题.关于计算机中的数值表示,在我的<数与计算机 (编码.原码.反码.补码.移码.IEEE…
转自https://blog.csdn.net/guoyunfei20/article/details/78283043 神经网络中梯度不稳定的根本原因:在于前层上的梯度的计算来自于后层上梯度的乘积(链式法则).当层数很多时,就容易出现不稳定.下边3个隐含层为例: 其b1的梯度为: 加入激活函数为sigmoid,则其导数如下图: sigmoid导数σ'的最大值为1/4.同常一个权值w的取值范围为abs(w) < 1,则:|wjσ'(zj)| < 1/4,从而有: 从上式可以得出结论:前层比后层…