在几年前的时候在做修图APP算法的时候, 曾经一度想过对3D Lut 预设数据进行压缩, 主要用于提升用户体验. 关于3d lut算法开源的资源也挺多的,就不多做科普了. 有兴趣的朋友,可以去查阅下ffmepg项目相关实现代码. 最早接触3d lut算法是2014年逆向 VSCO Cam 胶片算法的时候, 当然一开始我也不知道它的算法是3d lut, 是反反复复编写各个版本,算法优化, 直到有一天我突然想起一个常量特别奇怪, 后来有一段时间在看3d lut算法资料的时候,觉得算法特别熟悉. 后来…
降噪是音频图像算法中的必不可少的. 目的肯定是让图片或语音 更加自然平滑,简而言之,美化. 图像算法和音频算法 都有其共通点. 图像是偏向 空间 处理,例如图片中的某个区域. 图像很多时候是以二维数据为主,矩形数据分布. 音频更偏向 时间 处理,例如语音中的某短时长. 音频一般是一维数据为主,单声道波长. 处理方式也是差不多,要不单通道处理,然后合并,或者直接多通道处理. 只是处理时候数据参考系维度不一而已. 一般而言, 图像偏向于多通道处理,音频偏向于单通道处理. 而从数字信号的角度来看,也可…
前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. 不过在项目实测的时候,其实真的很难定标准, 到底在什么样的环境下,要增大音量,还是降低. 在通讯行业一般的做法就是采用静音检测, 一旦检测为静音或者噪音,则不做处理,反之通过一定的策略进行处理. 这里就涉及到两个算法,一个是静音检测,一个是音频增益. 增益其实没什么好说的,类似于数据归一化拉伸的做法. 静音检…
转自:https://www.cnblogs.com/cpuimage/p/8908551.html 前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. 不过在项目实测的时候,其实真的很难定标准, 到底在什么样的环境下,要增大音量,还是降低. 在通讯行业一般的做法就是采用静音检测, 一旦检测为静音或者噪音,则不做处理,反之通过一定的策略进行处理. 这里就涉及到…
众所周知, 图像方面的3A算法有: AF自动对焦(Automatic Focus)自动对焦即调节摄像头焦距自动得到清晰的图像的过程 AE自动曝光(Automatic Exposure)自动曝光的是为了使感光器件获得合适的曝光量 AW自动白平衡(Automatic White Balance)白平衡的本质是使白色物体在任何光源下都显示白色 前面的文章也有提及过,在刚开始做图像算法的时候,我是先攻克的自动白平衡算法. 后来攻克自动曝光的时候,傻啦吧唧的,踩了不少坑. 我相信一定不止我一个,一开始的时…
1. mybatis下数据源开发工作 2. 数据源与DAO的关系原理模型 3. 为什么要配置SqlSessionTemplate类的bean 4. 多数据源应用测试 1. mybatis下数据源开发工作 在properties文件中配置两个数据库连接参数 demo项目使用的是hikari数据源,配置 数据库地址,用户名,密码,数据库驱动等参数,在DataSource1Config类中通过@ConfigurationProperties(prefix = "spring.datasource.hi…
前几天无意间看到一个项目rnnoise. 项目地址: https://github.com/xiph/rnnoise 基于RNN的音频降噪算法. 采用的是 GRU/LSTM 模型. 阅读下训练代码,可惜的是作者没有提供数据训练集. 不过基本可以断定他采用的数据集里,肯定有urbansound8k. urbansound8k 数据集地址: https://serv.cusp.nyu.edu/projects/urbansounddataset/urbansound8k.html 也可以考虑采用用作…
mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. 也就是中文车牌识别开源项目EasyPR的作者liuruoze,刘兄. 自那时起就有一块石头没放下,想要找个时间好好理理这个算法. 学习一些它的一些思路. 因为一般我学习算法的思路:3个做法, 第一步,编写demo示例. 第二步,进行算法移植或效果改进. 第三步,进行算法性能优化. 然后在这三个过程中…
前面写过关于傅里叶算法的应用例子. <基于傅里叶变换的音频重采样算法 (附完整c代码)> 当然也就是举个例子,主要是学习傅里叶变换. 这个重采样思路还有点瑕疵, 稍微改一下,就可以支持多通道,以及提升性能. 当然思路很简单,就是切分,合并. 留个作业哈. 本文不讲过多的算法思路,傅里叶变换的各种变种, 绝大多数是为提升性能,支持任意长度而作. 当然各有所长, 当时提到参阅整理的算法: https://github.com/cpuimage/StockhamFFT https://github.…
前面有提到音频采样算法: WebRTC 音频采样算法 附完整C++示例代码 简洁明了的插值音频重采样算法例子 (附完整C代码) 近段时间有不少朋友给我写过邮件,说了一些他们使用的情况和问题. 坦白讲,我精力有限,但一般都会抽空回复一下. 大多数情况,阅读一下代码就能解决的问题, 也是要尝试一下的. 没准,你就解决了呢? WebRtc的采样算法本身就考虑到它的自身应用场景, 所以它会有一些局限性,例如不支持任意采样率等等. 而简洁插值的这个算法, 我个人也一直在使用,因为简洁明了,简单粗暴. 我自…