示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
问题来源:https://stackoverflow.com/questions/13851535/how-to-delete-rows-from-a-pandas-dataframe-based-on-a-conditional-expression 问: 我有一个pandas DataFrame,我想删除它特定列中字符串差姑娘是大于2的行,我知道我可以使用df.dropna()来去除包含NaN的行,但我没有找到如何根据条件删除行. 似乎我能够这样做: df[(len(df['column n…
 一   .列转行 创建所需的数据 CREATE TABLE [StudentScores]( [UserName] NVARCHAR(20), --学生姓名 [Subject] NVARCHAR(30), --科目 [Score] FLOAT, --成绩) INSERT INTO [StudentScores] SELECT '张三', '语文', 50INSERT INTO [StudentScores] SELECT '张三', '数学', 90INSERT INTO [StudentSc…
我们在写Sql语句的时候没经常会遇到将查询结果行转列,列转行的需求,拼接sql字符串,然后使用sp_executesql执行sql字符串是比较常规的一种做法.但是这样做实现起来非常复杂,而在SqlServer2005中我们有了PIVOT/UNPIVOT函数可以快速实现行转列和列转行的操作. PIVOT函数,行转列 PIVOT函数的格式如下 PIVOT(<聚合函数>([聚合列值]) FOR [行转列前的列名] IN([行转列后的列名1],[行转列后的列名2],[行转列后的列名3],.......…
我们在写Sql语句的时候没经常会遇到将查询结果行转列,列转行的需求,拼接sql字符串,然后使用sp_executesql执行sql字符串是比较常规的一种做法.但是这样做实现起来非常复杂,而在SqlServer2005中我们有了PIVOT/UNPIVOT函数可以快速实现行转列和列转行的操作. PIVOT函数,行转列 PIVOT函数的格式如下 PIVOT(<聚合函数>([聚合列值]) FOR [行转列前的列名] IN([行转列后的列名1],[行转列后的列名2],[行转列后的列名3],.......…
环境要求:2005+ 在日常需求中常常会有行转列的事情需求处理.假设不是动态的行,那么我们能够採取case when 罗列处理. 在sql 2005曾经处理动态行或列的时候,通常採用拼接字符串的方法处理.在2005以后新增了pivot函数之后,我能够利用这样函数来处理. 1.动态SQL注入式推断函数 --既然是用到了动态SQL,就有一个老话题:SQL注入. 建一个注入性字符的推断函数. CREATE FUNCTION [dbo].[fn_CheckSQLInjection] ( @Col nva…
pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: import pandas as pd df1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) df2 = pd.DataFrame({'a': [10, 20, 30], 'b': [40, 50, 60], 'c': [70, 80, 90]}) print df1 + df2 a b…
==================================声明================================== 本文原创,转载在正文中显要的注明作者和出处,并保证文章的完整性. 未经作者同意请勿修改(包括本声明),保留法律追究的权利. 未经作者同意请勿用于学术性引用. 未经作者同意请勿用于商业出版.商业印刷.商业引用. 本文不定期修正完善,为保证内容正确,建议移步原文处阅读. 本文链接:http://www.cnblogs.com/wlsandwho/p/44239…
这个比较简单,用||或concat函数可以实现 select concat(id,username) str from app_user select id||username str from app_user 字符串转多列 实际上就是拆分字符串的问题,可以使用 substr.instr.regexp_substr函数方式 字符串转多行 使用union all函数等方式 wm_concat函数 首先让我们来看看这个神奇的函数wm_concat(列名),该函数可以把列值以","号分隔起…
行转列,老生常谈的问题.这里总结一下网上的方法. 1.生成测试数据: CREATE TABLE human( name ), --姓名 norm ), --指标 score INT , --分数 grade ) --等级 ) GO INSERT INTO human(name,norm,score,grade)VALUES (,'c'), (,'b'), (,'a'), (,'a'), (,'b'), (,'c'), (,'j'), (,'k'), (,'m') 查询数据: 注意:这里的scor…
from:https://blog.csdn.net/tanzuozhev/article/details/76713387 How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代 https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas http://stackoverflow.com/que…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 此文我们继续围绕DataFrame介绍相关操作. 平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作. 1. 删除DataFrame某一列 这里我们继续用上一节产生的DataFram…
用 df.va lue s 读取数据的前提是必须知道学生及科目的位置,非常麻烦 . 而 df.loc 可直接通过行.列标题读取数据,使用起来更为方便 . 使用 df.loc 的语法为: 行标题或列标题若是包含多个项目,则用小括号将项目括起来,项目之间以逗 号分隔,如“( ” 数学 ” , ” 自然 ”) ”:若要包含所有项目,则用冒号“.”表示. 例如读取学生陈聪明的所有成绩: import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93…
重点:dataframe.apply(function,axis)对一行或一列做出一些操作(axis=1则为对某一列进行操作,此时,apply函数每次将dataframe的一行传给function,然后获取返回值,将返回值放入一个series)python去空格:字符串.strip() 待解决:dataframe.assign()应该怎么用? (1)读入数据后先把 城市 那一列城市名中的空格去掉 对一列数据去空格的方法: def qukong(hang): return hang['city']…
dsoft2 = data1.loc[(data1['程'] == "轻") | (data1['程'] == "中")]设置x下标plt.xticks(np.arange(24)) 特定列 排序 print(data.sort_values(axis = 0,ascending = True,by = '停留时间')) plt.savefig(name+".jpg") #中文myfont = FontProperties(fname=r'C:\…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
pandas DataFrame.shift()函数可以把数据移动指定的位数 period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列. eg: 有这样一个DataFrame数据: import pandas as pd data1 = pd.DataFrame({ 'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] }) print data1 a b 0 0 9 1 1 8…
和numpy数组(5)-二维数组的轴一样,pandas DataFrame也有轴的概念,决定了方法是对行应用还是对列应用: 以下面这个数据为例说明: 这个数据是5个车站10天内的客流数据: ridership_df = pd.DataFrame( data=[[ 0, 0, 2, 5, 0], [1478, 3877, 3674, 2328, 2539], [1613, 4088, 3991, 6461, 2691], [1560, 3392, 3826, 4787, 2613], [1608,…
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd…
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 DataFrame创建方式: 默认方式创建: >>> data = {'name':['Wangdachui','Linling','Niuyun'],'pay':[4000,5000,6000]} >>> frame = pd.DataFrame(data) >&g…
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p…
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: Creating, reading, and writing reference pandas.DataFrame() pandas.Series() pandas.read_csv() pandas.DataFrame.shape pandas.DataFrame.head pandas.read_…
pandas主要的两个数据结构是:series(相当于一行或一列数据结构和DataFrame(相当于多行多列的一个表格数据机构). 原文:https://www.cnblogs.com/gangandimami/p/8983323.html DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') inplace = true 时,会使DataF…
Pandas提供了duplicated.Index.duplicated.drop_duplicates函数来标记及删除重复记录 duplicated函数用于标记Series中的值.DataFrame中的记录行是否是重复,重复为True,不重复为False pandas.DataFrame.duplicated(self, subset=None, keep='first', inplace='True') pandas.Series.duplicated(self, keep='first')…
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15 add one row in a pandas.DataFrame -DataFrame添加行 https://stackoverflow.com/questions/107159…
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} >>> df = pd.DataFrame(dict1) >>> df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d 2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame) >…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 对于DataFrame的修改操作其实有很多,不单单是某个部分的值的修改,还有一些索引的修改.列名的修改,类型修改等等.我们仅选取部分进行介绍. 一.值的修改 DataFrame的修改方法,其实前面介绍loc方法的时候介绍了一些. 1. loc方法修改 loc方法实…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看…
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pandas DataFrame的修改方法 在pandas里,DataFrame是最经常用的数据结构,这里总结生成和添加数据的方法: ①.把其他格式的数据整理到DataFrame中: ②在已有的DataFrame中插入N列或者N行. 1. 字典类型读取到DataFrame(dict to DataFrame…