[SCOI2014]方伯伯的玉米田】的更多相关文章

3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Status] Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列.方伯伯可以选择一个区间,把这个区间的…
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MB Submit: 1399  Solved: 627 [Submit][Status][Discuss] Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列. 方伯伯…
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列. 方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作.拔玉米则可以随意选择一个集合的玉米拔掉. 问能最多剩多少株玉米,来构成一排美丽的玉米. Input 第1行包含2个整数n,K,分别表示这排玉米的数目以…
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列. 方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作.拔玉米则可以随意选择一个集合的玉米拔掉. 问能最多剩多少株玉米,来构成一排美丽的玉米. Input 第1行包含2个整数n,K,分别表示这排玉米的数目以…
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列. 方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作.拔玉米则可以随意选择一个集合的玉米拔掉. 问能最多剩多少株玉米,来构成一排美丽的玉米. Input 第1行包含2个整数n,K,分别表示这排玉米的数目以…
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后,最高玉米为y时的最长子序列长度 那么以n棵玉米分阶段,对于每个阶段 f[i][j]=max{p[k][l]}+1,  其中k=1 to j , l=1 to a[i]+j 然后用树状数组维护p[][]的最大值 #include<stdio.h> #include<string.h> #…
dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j]=max(dp[i'][j'])+1,其中h[i']+j'>=h[i],j'<=k 可以用二位树状数组来维护. #include<bits/stdc++.h> using namespace std; #define N 10005 #define lowbit(x) (x&-…
原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)=Max(f(p,q)+1)(0<=p<i,0<=q<j,a_p+q<a_i+j\)] 复杂度是\(O(n^2k^2)\) 显然过不了这题 用d(i, j) 表示到目前为止结尾玉米被拔高了i 次高度为j的最长序列长度. 我们需要不断更新这个表(当然不会下降) ,并查询二维前缀最大值…
题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出\(f[i][j]\)表示前\(i\)个玉米,第\(i\)棵必须选,且共拔高了\(j\)次的最大值 由之前的性质,我们知道\(f[i][j]\)状态中\(i\)的高度是\(h[i] + j\) 所以可以的到状态转移方程: \[f[i][j] = max\{f[k][l]\} + 1 \quad [k…
设f[i][j]为前i棵玉米被拔高了j(因为是单调不降所以前面越高越好,所以每次拔一个前缀),转移是f[i][j]=f[k][l]+1,l<=j,a[k]+l<=a[i]+j,然后用二维树状数组维护即可 #include<iostream> #include<cstdio> using namespace std; const int N=20005; int n,k,m,a[N],t[N][505],f[N][505]; int read() { int r=0,f=…
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚举$i$表示考虑到第$i$个玉米,设$dp[j][k]$表示为$j$,$i$被覆盖次数为$k$时的最大长度,那么不难发现$j=h[i]+k$ 那么很明显转移是$dp[j][k]=max\{dp[a][b]\}(a\leq j,b\leq k)$(因为它左边的覆盖次数不可能大于它,而且得满足是一个单调…
首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\).因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降.接着都按这个策略拔高玉米. 令 \(f_{i,j}\) 表示 \(1\sim i\) 这段前缀进行了 \(j\) 次操作,第 \(\boldsymbol{i}\) 株玉米不被拔掉,所能剩下最多的玉米. \[f_{i,j}=\max\left\{f_{p,q}\left|\right.p<i,q\leq j,a_p+q\leq a_i+j\rig…
洛谷题面传送门 怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法. 首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价.对于这类涉及区间操作问题,果断往差分序列方向想,我们记 \(d_i=a_i-a_{i+1}\),那么我们肯定会想将所有 \(d\) 都变成非正的,而一次操作肯定会将某个 \(d_i\) 减 \(1\),并选择将某个 \(d_i\) 加 \(1\)(当然也可以不操作).加一肯定是不优的,因此我们每次肯定会选择最右边…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题意] 给定一个n个数的序列,有K次将一个区间内的数加1的机会,问最长不下降子序列. [思路] 首先知道每次加1一个区间为[i,n]肯定不会差. 设f[i][j]为前i个数,还有j次机会的LIS,则有转移式: f[i][j] = max{ f[a][b],h[a]+b<=h[i]+j } 则可以用二维BIT加速方程转移. [代码] #include<set> #inc…
考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比一直拔高到j更优.因为j~n变高了对于答案是有利的. 我们定义f[i][j]表示到第i个点前面拔高j次的最大剩余数.在i点的高度为hei[i]+j(因为前面拔高j次,最终都会拔高到n).所以我们要找在高度小于hei[i]+j,次数小于j里面最大剩余数+1去更新.而找这个有限制的二维前缀最大值,可以用…
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5005 using namespace std; int n,k,a[N],bit[6005][605],len=0,ans=0; inline long long read(){ long long ans=0; char ch=getchar(); while(!isdigit(ch))ch=getcha…
可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l<=j,a[i]+j>=a[k]+l).容易发现这里是二维偏序,相当于查询(j,a[i]+j)左下部分的最大值,二维树状数组暴力维护,复杂度O(nklogklogv). #include<iostream> #include<cstdio> #include<cmat…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最长的不下降子序列 [题解] 我们发现,每次的区间右端点一定贪心选到最右端才是最优的, 那么在用树状数组统计的时候,只要一个点被+1了,那么后面的点起码+1, 我们在树状数组后面加一维统计被区间包含的次数,发现也是前缀和关系, 所以用二维树状数组统计答案即可. 为避免自身被重复统计,第二维循环降序.…
我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #include<cstdio> #include<cstring> #include<algorithm> #define N 10005 #define K 505 #define M 5505 using namespace std; inline int read() {…
分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那么在前iii个位置用了jjj次操作的话,a[i]a[i]a[i]就变成了a[i]+ja[i]+ja[i]+j. 可以列出DP方程式.设f[i][j]f[i][j]f[i][j]表示前iii个用了jjj次操作得到的LISLISLIS最长的长度. 有 f[i][j]=Max{ f[k][l]+1 }(l≤j 且 …