Perceptron Learning Algorithm 感知器算法, 本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二. 算法确定后,根据W取值的不同形成不同的h,构成假设集合H. 如2维感知器算法,根据w0,w1,w2的不同取值,构成了不同的h,这些h最终构成H.注意为了方便表示,将阈值的相反数记为w0,对应的数据点增加一维x0,恒为1. 而算法就是根据给定数据集D从H中选出与目标模式f最为相似的g. 更新规则/学习过程, 遍历…