bzoj5253 [2018多省省队联测]制胡窜】的更多相关文章

后缀自动机挺好毒瘤的题. 我们考虑哪些切点是不合法的.肯定是所有的匹配串都被切了. 我们考虑第一个切口的位置. 当第一个切口在第一个出现位置前时,第二个切口必须切掉所有的串. 当第一个切口在$l_{i}$和$l_{i+1}$间的时候(此时必须保证切掉第一个串),第二个切口必须切掉$s_{i+1}$到$s_{cnt}$这些串 当第一个切口在$l_{cnt}$后时(此时依旧需要保证切掉第一个串),第二个切口随便放. 于是我们将询问离线,对于每个询问通过在parent树上倍增来找到所对应的节点. 对于…
BZOJ_5249_[2018多省省队联测]IIIDX_线段树 Description [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款音乐游戏内一般都包含了许多歌曲,歌曲越多,玩家越不易玩腻.同时,为了使玩家在游戏上氪更多的金钱花更多的时间,游戏一开始一般都不会将所有曲目公开,有些曲目你需要通关某首特定歌曲才会解锁,而且越晚解锁的曲目难度越高. [题目…
5249: [2018多省省队联测]IIIDX 链接 分析: 贪心. 将给定的权值从大到小排序,从第一个往后挨个赋值,考虑第i个位置可以赋值那些树.首先满足前面必须至少有siz[i]个权值没选,如果存在相同的数,尽量往后选. 那么可以给每个权值记录一个值F[i],表示i左边可以选多少个权值了.还要和后面的取一个最小值才是真正的能选多少个. 在线段树上分治找到这个位置. 注意在bzoj上,fa[i]=int(1.0*i/k) 有精度误差,而写成floor就可以了. 代码: #include<cst…
bzoj 5249 [2018多省省队联测] IIIDX Link Solution 首先想到贪心,直接按照从大到小的顺序在后序遍历上一个个填 但是这样会有大问题,就是有相同的数的时候,会使答案不优 比如考虑 \((1, 2)(1, 3)(2, 4)\) 这样一棵树,并且点权是 \({1,1,1,2}\) 那么直接贪心会使得答案为 \(v_1=1,v_2=1,v_3=1,v_4=2\),但是实际上最优解为 \(v_1=1,v_2=1,v_3=2,v_4=1\) 问题出在我们先考虑 \(v_2\)…
Loj #2479. 「九省联考 2018」制胡窜 题目描述 对于一个字符串 \(S\),我们定义 \(|S|\) 表示 \(S\) 的长度. 接着,我们定义 \(S_i\) 表示 \(S\) 中第 \(i\) 个字符,\(S_{L,R}\) 表示由 \(S\) 中从左往右数,第 \(L\) 个字符到第 \(R\) 个字符依次连接形成的字符串.特别的,如果 \(L > R\) ,或者 \(L < [1, |S|]\), 或者 \(R < [1, |S|]\) 我们可以认为 \(S_{L,…
Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何棋子, 两人轮流在格子上落子,直到填满棋盘时结束.落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且 这个格子的左侧及上方的所有格子内都有棋子. 棋盘的每个格子上,都写有两个非负整数,从上到下第i行中从左到右第j列的格子上的两个整数记作Aij.Bij.在 游戏结束后,菲菲和牛牛会分别计算自己的得分:菲菲的得分是所有有黑棋的格子上的Aij之和,牛牛的得分是所 有有白棋的格…
Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何棋子, 两人轮流在格子上落子,直到填满棋盘时结束.落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且 这个格子的左侧及上方的所有格子内都有棋子. 棋盘的每个格子上,都写有两个非负整数,从上到下第i行中从左到右第j列的格子上的两个整数记作Aij.Bij.在 游戏结束后,菲菲和牛牛会分别计算自己的得分:菲菲的得分是所有有黑棋的格子上的Aij之和,牛牛的得分是所 有有白棋的格…
Description 一年一度的综艺节目<中国新代码>又开始了. Zayid从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了. 题目描述 轻车熟路的Zayid顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的: 总共n名参赛选手(编号从1至n)每人写出一份代码并介绍自己的梦想.接着由所有导师对这些选手进行排名. 为了避免后续的麻烦,规定不存在排名并列的情况. 同时,每名选手都将独立地填写一份志愿表,来对总共m位导师(编号从1至m)作出评价. 志愿表…
斜率优化树形dp?? 我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大. 然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连 然后我们会发现最后的答案关于割的边数是一个单峰的函数,这时候事情就变得明朗起来个p 我们考虑拿一条斜率为k的直线去切这个函数,切到的点是什么?是每选一条路径额外付出k点代价时的最优解,于是我们二分这个斜率,然后直接树形dp求最优解以及位置即可,因为每次的最优解一定是上次的最优解和儿子的最优解共同转移而来的,所以我们只需…
直接网络流模拟即可AC. 可持久化+暴力=90分, 可持久化+二分=30分, 暴力加边+二分=100分. 我也很无奈啊. Ivan便涨红了脸,额上的青筋条条绽出,争辩道,“memcpy也是可持久化……memcpy!……OIer的事,当然是可持久化!”接连便是难懂的话,什么“可持久化无旋Treap套线段树启发式合并”,什么“暴力踩正解”之类,引得众人都哄笑起来. #include <cstdio> #include <cstring> #include <iostream>…