引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tensorflow编程常用的一些方法. 正文 神经网络的内容 一般,一个神经网络程序包含以下几部分内容. 1.数据表达和特征提取.对于一个非深度学习神经网络,主要影响其模型准确度的因素就是数据表达和特征提取.同样的一组数据,在欧式空间和非欧空间,就会有着不同的分布.有时候换一种思考问题的思路就会使得问题变…
自学Python之路-Python核心编程 自学Python之路[第六回]:Python模块       6.1 自学Python6.1-模块简介    6.2 自学Python6.2-类.模块.包    6.3 自学Python6.3-内置模块(1)    6.4 自学Python6.4-内置模块(2)…
自学Python之路-Python并发编程+数据库+前端 自学Python之路[第一回]:1.11.2 1.3…
自学Python之路-Python网络编程 自学Python之路[第一回]:1.11.2 1.3…
引言 最近自学GRU神经网络,感觉真的不简单.为了能够快速跑完程序,给我的渣渣笔记本(GT650M)也安装了一个GPU版的tensorflow.顺便也更新了版本到了tensorflow-gpu 1.7.之前相关的程序代码依然兼容,可以运行.刚好遇到五一假期,一个人在实验室发霉,就顺便随手做了一下MNIST手写体数字的BP神经网络识别程序.做的比较简单,日后可能会扩充这一篇随笔,所以大概算是个草稿版. 正文 MNIST数据准备 MNIST手写体数字识别,在人工智能中的地位有点像’hello wor…
引言 从本周,我将开始tensorflow的学习.手头只有一本<tensorflow:实战Google深度学习框架>,这本书对于tensorflow的入门有一定帮助.tensorflow中文社区中的翻译的谷歌官方教程十分详细,是自学tensorflow的好帮手,当然如果是英文熟手可以直接看谷歌官方给出的原版教程(博主英语是靠谷歌翻译和百度翻译救活的). 本篇博客主要讲述机器学习的发展过程,以及BP神经网络的主要内容.不涉及tensorflow的编程.具体BP神经网络tensorflow的实现将…
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时候就是深度学习啦 没有明确的规则来设计最好有多少个隐藏层,可以根据实验测试的误差以及准确度来实验测试并改进. 交叉验证方法(cross -validation):把样本分为K份,取一份为测试集,其他为训练集.共取K次,然后取其平均值 BP的步骤 1.初始化权重(weight)以及偏向(bias),随…
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经网络.我们的第二话就从BP神经网络开始漫谈吧. BP的来源 “时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代.同样的道理,在讲BP网络的特性和用途之前,我们需要先了解一下它的来源和诞生原因,以便理解它的重要性. 1.1 最简单的神经网络结构——感…
使用简单BP神经网络拟合二次函数 当拥有两层神经元时候,拟合程度明显比一层好 并出现如下警告: C:\Program Files\Python36\lib\site-packages\matplotlib\backend_bases.py:2453: MatplotlibDeprecationWarning: Using default event loop until function specific to this GUI is implemented warnings.warn(str,…
from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载数据集 mnist = input_data.read_data_sets(r"C:/Users/HPBY/tem/data/",one_hot=True)#加载本地数据 以独热编码形式 import tensorflow as tf #设置超参 learning_rate = 0.01…