convex optimization】的更多相关文章

(CODE) Low-Rank Matrix Recovery and Completion via Convex Optimization 这个是来自http://blog.sina.com.cn/s/blog_631a4cc401012wah.html这个链接,我这里借用下,这个博客有个小小的问题,我更新域名后可以打开,这里记录一下,也分享一下. 如第一个zip文件的地址是http://perception.csl.uiuc.edu/matrix-rank/Files/inexact_alm…
A Convex Optimization Framework for Active Learning Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. 目前AL方法存在的问题有: 1.大部分AL算法在预训练分类器之…
##凸优化总结所有这些想法基本是来自于书籍[convex optimization](http://book.douban.com/subject/1888111/),主要包括凸优化的基本理论,主要的优化算法.凸优化的基本理论包括凸优化的基本定义,以及KKT条件.###优化问题的定义优化问题的基本定义如下:$$ argmin_x \space f_0(x) $$$$ s.t. \space f_i(x) \le 0 \space i=1, ..., m $$$$ h_i(x) = 0 $$在这里…
以下笔记参考自Boyd老师的教材[Convex Optimization]. I. Mathematical Optimization 1.1 定义 数学优化问题(Mathematical Optimization) 有如下定义: \[ \begin{align} &minimize \, f_0(x) \notag \\ &subject \, to \, f_i(x)≤b_i, \, i=1,...,m \tag{1.1} \end{align} \] 向量\(x=(x_1,...,x…
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 在机器学习中, 很多情况下我们都需要求得一个 问题的全局最优值(global optimum). 大多数的全局最优值很难求得, 但是对于凸问题, 我们可以比较高效的找到其全局最优值, 这是由凸问题的性质决定的.我们将逐步的介绍凸集, 凸函数, 凸问题等. 1. 凸集(convex set) 对于一个集合\(C\), 如果对于任意两个元素\(x,y \in C\), 以及任意实数\(\thet…
凸优化理论 Convex Optimization 清华大学出版社 王书宁许窒黄晓霖译 Stephen Boyd Lieven Vandenbergt原著 2013 年l 月第1 版 下载链接 链接:http://pan.baidu.com/s/1nvRaqfv 密码:mjab 或者可以 :http://www.pandaroll.cn/downloads/tyh.pdf…
CMU凸优化笔记--凸集和凸函数 结束了一段时间的学习任务,于是打算做个总结.主要内容都是基于CMU的Ryan Tibshirani开设的Convex Optimization课程做的笔记.这里只摘了部分内容做了笔记,很感谢Ryan Tibshirani在官网中所作的课程内容开源.也很感谢韩龙飞在CMU凸优化课程中的中文笔记,我在其基础上做了大量的内容参考.才疏学浅,忘不吝赐教. 1.凸集合 1.1 基本概念 定义:给定一个集合$C \subseteq \mathbb{R}^n $,满足下列条件…
J. N. Tsitsiklis and Z.-Q. Luo, "Communication complexity of convex optimization," Journal of Complexity, vol. 3, no. 3, pp. 231–243, Sep. 1987, doi: 10.1016/0885-064x(87)90013-6. 问题描述 两个用户各自有一个凸函数\(f_i\),相互交互最少的二进制消息,从而找到\(f_i+f_2\)的最优点 基本定义 \(…
zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex function Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets. The convexity makes opt…
I. 仿射凸集(Affine and convex sets) 1. 线与线段 假设\(R^n\)空间内两点\(x_1,x_2\, (x_1≠x_2)\),那么\(y=\theta x_1+(1-\theta)x_2, \theta∈R\)表示从x1到x2的线.而当\(0≤\theta≤1\)时,表示x1到x2的线段. 2.仿射集 仿射集(Affine sets) 定义: 假设有一个集合\(C∈R^N\),如果通过集合C中任意两个不同点之间的直线 (上的任何点) 仍在集合C中,那么称集合C是仿射…