2018-08-28 17:51:04 问题描述: 问题求解: 本题是一个求最优解的问题,很自然的会想到动态规划来进行解决.但是刚开始还是陷入了僵局,直到看到了hint:LIS,才有了进一步的思路.下面是最初的一个解法.使用的是map来记录信息. public List<Integer> largestDivisibleSubset(int[] nums) { if (nums.length == 0) return new ArrayList<>(); Arrays.sort(n…
题目描述: Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. 解题分析: 如果a%b==0,则a=mb,…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: nums: [1,2,3] Re…
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/largest-divisible-subset/description/ 题目描述: Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in thi…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: nums: [1,2,3] Re…
Very nice DP problem. The key fact of a mutual-divisible subset: if a new number n, is divisible with the largest number m within a mutual-divisible set s, s U {n} is also a mutal-divisible subset. class Solution { public: vector<int> largestDivisib…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: nums: [1,2,3] Re…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: nums: [1,2,3] Re…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: Input: [1,2,3] O…
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0. If there are multiple solutions, return any subset is fine. Example 1: nums: [,,] Resul…
class Solution { public: vector<int> largestDivisibleSubset(vector<int>& nums) { vector<int> dp(nums.size(),0); //dp[i] 代表 nums[i]在nums里面能够整除的数字个数 1,2,3, 里面 dp[2]代表index=2的数 3 能够整数的数有1个; vector<int> idx(nums.size(),0); //记录每个索引…
给出一个由无重复的正整数组成的集合, 找出其中最大的整除子集, 子集中任意一对 (Si, Sj) 都要满足: Si % Sj = 0 或 Sj % Si = 0.如果有多个目标子集,返回其中任何一个均可.示例 1:集合: [1,2,3]结果: [1,2] (当然, [1,3] 也正确)示例 2:集合: [1,2,4,8]结果: [1,2,4,8]详见:https://leetcode.com/problems/largest-divisible-subset/description/ C++:…
LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列.很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) . ********************************************************************************* 先回顾经典的O(n^2)的动态规划算法: 设a[t]表示序列中的第t个数,dp[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设dp[…
coprime_sequence(互质序列) 问题描述 顾名思义,互质序列是满足序列元素的 gcd 为 1 的序列.比如[1,2,3],[4,7,8],都是互质序列. [3,6,9]不是互质序列.现在并不要求你找出一个互质序列,那样太简单了!真正的问题描述是:给定一个序列,删除其中一个元素使得剩下元素的 gcd 最大,输出这个 gcd. ★数据输入 输入第一行为一个正整数 n. 第二行为 n 个正整数 ai(1<=ai<=10^9).80%的数据 2<=n<=1000.100%的数…
原始题目: 给定一个无序的整数序列, 找最长的连续数字序列. 例如: 给定[100, 4, 200, 1, 3, 2], 最长的连续数字序列是[1, 2, 3, 4]. 小菜给出的解法: function maxSequence(array,step){ var _array = array.slice(), //clone array _step = 1, _arrayTemp = [], i = 0; var parseLogic = { //result container parseRe…
4921: [Lydsy六月月赛]互质序列 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 188  Solved: 110[Submit][Status][Discuss] Description 你知道什么是“互质序列”吗?那就是所有数的最大公约数恰好为1的序列. “互质序列”非常容易找到,但是我们可以尝试通过删除这个序列的一个非空连续子序列来扩大它的最大公约数. 现在给定一个长度为n的序列,你需要从中删除一个非空连续子序列,使得剩下至少2个数,…
分析: 完整 代码: // 最长不下降子序列 #include <stdio.h> #include <algorithm> using namespace std; ; int A[N], dp[N]; int main() { freopen("in.txt", "r", stdin); int n; scanf("%d", &n); ; i <= n; i++){ scanf("%d"…
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列.若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度.…
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ,..., zk> 满足如下条件时称为X的子序列,即存在一个严格递增的X的下标序列<i1,i2 ,..., ik>,对于所有j = 1,2,...,k,满足xij = zj,例如,Z=<B,C,D,B>是X=<A,B,C,B,D,A,B>的子序列,对应的下标序列为&l…
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列,其子序列共有2的n次方个,这样的话这种算法的时间复杂度就为指数级 了,这显然不太适合用于序列很长的求解了. 解法二:既然学到了动态规划,就来看看能否用动态规划的思想来解决这个问题.要使用动态规划,必须满足两个条 件:有最优子结构和重叠子问题.为了便于学习,我们先来了解下这两个概念. 如果问题的一个最…
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 2.最长公共子串 其实这是一个序贯决策问题,可以用动态规划来求解.我们采用一个二维矩阵来记录中间的结果.这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是…
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前…
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2   则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建表的时候一定要注意初始化以及在发现规律的时候一定要想怎么利用前面已经算过的结果来得到现在的结果,或者利用其他的一些规律来发现能够解题的规律. 图中单元格需要填上相应的数字(这个数字就是dp[i][j]的定义,记录的LCS的长度值).可以发现规律,简单来说:如果横竖(i,j)对应的两个元素相等,该格子…
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2788/pid/2080 传送门: https://blog.csdn.net/sunshine_pb/article/details/21820159 设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk}, 记:    Xk为序列X中前k…
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence).比如字符串1:BDCABA:字符串2:ABCBDAB 则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA 二,算法求解 这是一个动态规划的题目.对于可用动态规划求解的问题,一般有两个特征:①最优…
问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1/B1为A和B的公共子序列.求出A和B的最长公共上升子序列. 分析     结合最长公共子序列和最长上升子序列来解决这个问题,定义状态dp[i][j]表示A串中前i个字符和B串中前j个字符且以B[j]为结尾的最长公共上升子序列的长度.则有状态转移方程:[在进行动态规划状态的设计的时候,要简单.详尽的…
  最长公共子序列(LCS)是一类典型的动归问题. 问题 给定两个序列(整数序列或者字符串)A和B,序列的子序列定义为从序列中按照索引单调增加的顺序取出若干个元素得到的新的序列,比如从序列A中取出 A[i1], A[i2], ...A[ik],其中0=< i1 <= i2 <= ... ik <= n-1得到的新的序列 A[i1].A[i2]....A[ik]即为A的一个子序列.     两个不同的原序列A和B可能有着相同的子序列,求出A和B的公共子序列的最长长度. 分析     …
LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等.这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8). 求解…
最长不降子序列是这样一个问题: 下面介绍动态规划的做法. 令 dp[i] 表示以 A[i] 结尾的最长不下降序列长度.这样对 A[i] 来说就会有两种可能: 如果存在 A[i] 之前的元素 A[j] (j<i),使得 A[j]≤A[i] 且 dp[j]+1>dp[i],那么就把 A[i] 跟在以 A[j] 结尾的 LIS 后面,形成一条更长的不下降子序列(令 dp[i]=dp[j]+1). 如果 A[i] 之前的元素都比 A[i] 大,那么 A[i] 就只好自己形成一条 LIS,但是长度为 1…
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子…